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I FOREWORD

This report documeni/ research conducted for the Office of Naval

Research by Vector Reseal'ch, Incorporated, (VRI) under contract

N00014-72-C-0300. The Jesearch is a continuation of earlier activities

conducted byVRI under/the same contract and described in the report

entitled Development or Analytic Methodology for Naval Planning Areas

(VRI report number ONA-l FR 73-1). One result of the early research wasi ) /

a finding that an analytic model of an engagement between a ship and a

number of cruise mi'siles would be useful as an aid to naval planning.

r , ,Such a model has b~en developed and is described in this report. The

model is mathematical in character. This report is written for

technical personnel who will program it and assist in its application.

Ia"
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1.0 INTRODUCTION

The research documented in this repcrt represents a continuation of

work begun in 1972 which had as objectives:

(1) the study of Navy planning areas,

(2) the examination of current models, and

(3) the development of analytic structures.

Initial work in pursuit of these objectives focused on airborne anti-

submarine warfare and on fleet air defense; models utilized by the Navy in

conducting planning in both areas were examined. Two results of this exam-

ination were the observations that the most commonly used models were Monte

Carlo simulations and that there was a strong possibility that analytic

models could be developed as supplements to or substitutes for such models.

Following discussions with personnel at ONR and the Office of the Chief of

Naval Operations (OP 96), it was decided to concentrate activities in the

area of fleet air defense, in particular fleet air defense against cruise

missiles, because of the threat posed by such missiles and because of the

fact that existing models were of only limited applicability in studying

ship/cruise missle engagements.

The remainder of the first year's efforts were concerned with the

development of an analytic model of an engagement between a single ship

and a number of cruise missiles. In addition, preliminary work was carried

out to determine the structural requirements of a fleet/multiple cruise

missile engagement model. A hierarchical analytic structure was proposed.

In this structure one set of models, referred to as engineering models,

are used to map subsystem hardware characteristics into subsystem perform-

ance characteristics. A second set of models, referred to as operational
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models, are used to integrate subsystem performance characteristics to pro-

vide measures of total system effectiveness (of either a ship or a fleet)

in an engagement with multiple cruise missiles. The advantages of this

approach which are discussed fully in [Bonder, Cherry and Miller, 1973],

include not only economy of operation but also flexibility in that, pro-

posed hardware changes can be more easily evaluated and areas in which im-

provement is desirable or necessary can be more easily identified.

Work was carried out during the first year's contract on both opera-

tional and engineering models. A kill-rate-structure was adopted for the

single ship/multiple cruise missile operational model and rapid fire gun

system kill rates were developed. The extension of such a structure to

a fleet operational model was discussed and evaluated. Requirements for

engineering models were identified and modeling was carried out in the areas

of radar power management, coherent and noncoherent detection, Doppler

discrimination and target tracking and prediction. The results of devel-

opment activities in both operational and engineering models are described

in [Bonder, Cherry and Miller, 1973].

Subsequent to the completion of the activities of the first year,

initial findings and results were reviewed, and the decision made to con-

centrate the second year of the research activity on the development of

analytic operational models of engagements between cruise missiles and

single ships. A model representing engagements between a single ship

and a number of cruise missiles was developed as a result of that effort

and is described in this report.

The single ship/multiple cruise missile engagement model is an
operational model (i.e., it maps performance descriptions for sub-

systems into measures of effectiveness of the engagement) and
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is analytic in character. The principal mathematical structures are sto-

chastic, and the outputs are probabilistic descriptions of measures of

effectiveness (outcomes of engagements) as functions of time. The elements

and processes represented in the model include:

. the ship's defensive weapon systems and weapon assignment logic,

• damage to defensive weapons,

• in-flight destruction of cruise missiles,

. jammers and other ECM systems employed against defensive weapon

systems, and

. raid characteristics.

The engagement model requires as inputs the performance characteristics

of systems (missiles, defensive weapons, etc.) including-such items as le-

thality characteristics of cruise missiles with respect to the ship (and

vice versa), tracking error characteristics of the ship's radar in an EW

environment, etc. While it is anticipated that some of the model's inputs

will be determined directly from existing data, it is believed that other

inputs should be obtained as outputs of engineering submodels that map

physical characteristics of subsystems into performance descriptors of

those subsystems, which can then be input to the engagement model.1 Accord-

ingly, in addition to the engagement model itself, an engineering submodel

that permits tracking error characteristics of radars and other sensors in

an EW environment to be determined as a function of the physical character-

istics of the radar was also developed during the second year's effort and

is documented in this report.

'With this arrangement the effect of variations of these subsystems on the
outcome of the engagement can be examined by varying the inputs to the
submodels -- a convenient and efficient approach which may facilitate the
search for improved systems.
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The remainder of the replort consists of two chapters and three

appendices. The single ship/multiple cruise missile engagement model

is described in chapter 2.0. Expressions for the kill rates and weapon

firing probabilities (both of which are required for the overall model)

in terms of subsystems performance descriptors aie also developed in

chapter 2.0. Suggestions for refining the model and recommendations

for extending the model to represent multiple ship/multiple cruise

missile engagements are discussed in chapter 3.0. An engineering

model, which may be used to generate some of the parameters involved

in the expressions for kill rates, is described in appendices A and-B.

A system of differential equations employed in the overall model is

analyzed in appendix C.

• 4

4.
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2.0 AN A!NA0TIC MODEL OF A SINGLE SHIP/MULTIPLE

CRUISE MISSILE ENGAGEMENT

An analytic model of a single ship/multiple cruise missile engage-

merit is described in detail in section 2.1, together with the principal

assumptions used' in the development of the model. Expressions for "kill1

rates" and "firing probabilities," which are fundamental to the model,

are developed in sections 2.2 and 2.3 respectively.I

2.1 Overall tructure of the -Model

2.1.1 Pri Lii~1L As'sumptions and- Inputs jt6. the Mbdel

A siile ship/mul-Ciple- c-ruise misjle engdgemeft is viewed asI
tak--ifg >0la'ce it, two, phass an e~yphase in which thie cruise~rissiles

are -&ngaged onliy by- defenis~'~iyo;'a'craft, at a-d -ud from -he ship, and
late -phase An -whict *Me c-ruisemissile- r eged' only- by the ship's

-defensive weape,9,<!tte1 a LiVely c-, se ranges. 8ecause defensive air-

craft wij)%1- s6 dom be used at the same tir;,e as -the ship's, defen'ive

weap'las, the view is t±h~t -no such aircraft participate -in the late

'phase of the erigdgernent.

The engdgernent model described i n th i s report portrays on Vy thllibI

late phase of the engagement 1 of which figure 1 i's 6th i.1-ustration.

'Other models which could portray the early phase of t~le 0.n~agqr,.ent
(aircraft vs cruise missiles) are avifila~,e elsewheve.

.11
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The fullowing principal assumptions about this phase have been made:
1

(I) The ship detects cruise missiles at deterministic- ranges from

the ship.2 Detection ranges may vary with the direction of

incidence of the cruise missiles. Upon detecting a cruise

missile, the ship initiates tracking and continually updates

its estimates of what the-position of the cruise missile will

be at future times.

(2) The ship's defensive weapons are limited to guns and SAM sys-

tems.

(3) The ship can redirect in-flight rounds from both guns and

SAM systems at any time prior to their arrival at the cruise

missile at which they have last been targeted.
(4) The ship always assigns all available defensive weapons to

that surviving cruise missile which will, if not sooner de-

stroyed, be the next to impact the ship.

The above-listed principal assumptions serve to bound (and, in the case

of assumption (3), simplify) the scenario to be modeled as well as to

define some of the types of input data which will be required by the

model. The manner in which each assumption accomplishes these objec-,

tives is briefly discussed below.

'Other assumptions, more minor in character than those listed here, will
be introduced and used aE needed.

2This assumption, and the others as well, can be relaxed. Methods for
relaxing the assumptions will be discussed later.

........... ---------
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Detection and Tracking. Since the ranges at which a ship can detect

incoming cruise missiles can be predicted with reasonable confidence,
1

these ranges have been viewed as being deterministic in character. The

range at which detection of each cruise missile occurs, together with the

actual flight paths and velocities of the cruise missiles, are required )
as input to the model in order to obtain the time which the ship has to

engage and destroy each missile before it impacts the ship and to fix the

geometry of the engagement.

In practice, it will be convenient to represent the actual flight

path of each cruise missile by a sequence of straight line segments and

constant-radius turns of a specified number of degrees. 2 The speed of

the cruise missile is taken to be constant on each segment.

Ship's Defensive Weapon Systems. A single ship's present defenses

against cruise missiles consist of rapid-fire guns and SAM systems. The

number of defensive weapon systems, along with certain performance data

which affect their lethality characteristics with respect to cruise mis-

siles, is required as input to the model.

'Perhaps the simplest method to obtain the detection range is to use the
results of tests of the ship's missile detection radar against cruise-
missile-like objects under conditions of the type a user desires to rep-
resent in the model (e.g., presence or absence of enemy jamming, weather
conditions, the altitude of the incoming cruise missiles, etc.). Alter-
natively, the ship's detection range could be obtained from analytic
models (see, for example, [Brennan and Hill, 1964] and [Kirkwood, 1965]).
Similarly, information about flight-path estimation for incoming cruise
missiles could be obtained by testing the equipment involved or by ana-
lytic modeling. An approach of the latter type is documented in [Bonder, 'I

Cherry and Miller, 1973].

2Procedures of this type for handling flight paths have been developed at
the Systems Research Laboratory at the University of Michigan; they are
documented in [SRL, 1969].



9

Fire Redirection. On the one hand, it is sometimes possible for a

ship to redirect an in-flight SAM from the cruise missile at which it was

initially targeted to another cruise missile.' On the other hand, redirec-

tion of in-flight gunfire by the ship does not appear to be feasible.

Nevertheless it is here assumed for mathematical convenience and simplicity

that redirection of both gunfire and SAMs is possible. Strictly speaking,

therefore, this assumption has the effect of making the engagement model

described here generate an upper bound on the effectiveness with which

real ships can fight cruise missile engagements. While an analysis of

such engagements is possible without this assumption, it is not clear that

the additional realism thus gained would be worth the concomitant increase

in mathematical and computational complexity.

In view of the assumption that the ship has the capability to redirect

in-flight fire from any weapon system, it is convenient to say that a weap-

on system "is firing at" a cruise missile at a particular time whenever

fire from that weapon is arriving at the cruise missile at that time.

Ship's Weapon Assignment Logic.2 Although other weapon assignment

logics are available, the logic described in assumption (4) above closely

approximates one which has been used in practice. This logic has there-

fore been assumed as an initial basis for modeling.

'Redirection of a SAM is usually possible in practice until the SAM enters
a terminal lock-on phase.

2Ship's weapon assignment logics in general, and the one assumed for the
engagement model in particular, are discussed at greater length in
section 2.3.
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Notice finally that some of the above assumptions state that certain

aspects of the engagement are regarded as being deterministic instead of

stochastic. For example, assumption (1) says that the ranges at which the

ship detects cruise missiles is here taken to be deterministic, whereas

these ranges are often treated stochastically elsewhere (i.e., in other

models). These assumptions may therefore be seen as conditioning the en-

gagement upon the indicated types of information being fixed. This con-

ditioning could be removed, if desired, by embedding the engagement model

to be described here in a richer structure in which these deterministic

aspects would instead be treated stochastically. This would entail an

increase in mathematical and computational complexity. Since much of the

complexity of the interactions between the ship and the cruise missile can

already be analyzed under the assumptions listed above, it is desirable

to postpone enrichments of the types suggested above until such time as

experience gained with the existing model indicates that they are needed.

2.1.2 Outputs and Overall Mathematical Structure of the Model

The outputs of the single ship/multiple cruise missile engagement

model are of two types:

the conditional probability that each cruise missile survives the

engagement up to time t, given that the ship has sustained a cer-

tain degree of damage at that time (the output is provided for

each time t and each possible degree of damage to the ship), and

the probability that the ship sustains each possible degree of

damage at each time t.



The overall structure of the engagement model is based on renewal

theory. Fundamental to the model are "kill rates" and what are here

called "firing probabilities." The kill rate associated with each defen-

sive weapon system/cruise missile pair at time t is the conditional prob-

ability that the weapon system will kill the cruise missile in a small

time interval' [t, t+S), given that the cruise missile is still alive at

time t and that the weapon is firing at the cruise missile at that time.
2

The firing probability p(t) associated with each defensive weapon system/

cruise missile pair is the probability that the weapon is actually firing

on the missile at time t.
3

It is convenient to number the cruise missiles in the order in

which they will, if not sooner destroyed, impact the ship. Thus cruise

missile 1 is that missile which, if not destroyed, will impact the ship

before any of the other cruise missiles; cruise missile 2 is that missile

which will, if not destroyed, be the next soonest to impact the ship,

and so on. The convention here is that time is measured from zero

starting with the time at which the cruise missile 1 is detected by the

ship. The time at which cruise missile j will, if not sooner destroyed,

impact the ship is denoted by "t,"' so that 0 < t < t2  follows

from these conventions. The ship's defensive weapon systems may be numbered

in an arbitrary order.

'Here, as elsewhere in this report, 6>0 is a small time interval.

2Recall that a weapon is said to be firing at a cruise missile at time t
if and only if lethality from the weapon is arriving at the missile at
that time.

3The reason why the firing of a defensive weapon upon a particular cruise
missile is treated stochastically will be explained later.
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Unlike the cruise missiles, the ship's defensive weapons are viewed

as being capable of sustaining partial damage (as would happen, for example,

when guns switch to optical tracking because of damage to the radar system).

Partial damage to the ship's defensive weapons can conveniently be de- U,

scribed by introducing and using "damage categories" for the weapons and

"damage states" for the ship. The damage categories for one of the ship's

defensive weapons are statements that are descriptive of that weapon's

capability to continue to function in the engagement and may be chosen

arbitrarily by the user of the model. For example, the damage categories

for a weapon might he chosen as followsl:

damage

• category number weapon capability

I none (weapon destroyed)

2 marginal

3 medium

4 almost full

5 full (no damage)

The damage categories for the other defensive weapons may be chosen simi-

larly. If there are ni damage categories associated with defensive weaponw
i, and if there are W defensive weapons on the ship, then there are JHjn i

combinations of damage categories that could characterize the status of

the ship's defensive weapons at any time. It is convenient to call each

such combination a damage state of the ship. Damage states are denoted

'The terms which define the categories must, of course, themselves be
defined.
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by vectors d, where the it component di of a damage state vector d is

the number of the damage category of defensive weapon .ystem i. The par-

ticular damage state corresponding to all of the ship's defensive weapons

being functional at full capability is denoted by u. At time 0, the ship

is assumed to be in damage state u.

The notation used is summarized below:

M = number of cruise missiles in the engagement;

W = number of defensive weapon systems on the ship;

t. = time at which cruise missile j will, if not sooner

destroyed, impact the ship (1 < j < M);

mn(tld) = conditional probability that cruise missile j will

be alive at time t, given that the ship is in damage

state d at that time (I < j < M, all d);

6.ki (tld) = conditional probability that defensive weapon system

i will kill cruise missile j in the interval [t, t+S),

given that cruise missile j is still alive at time t,

that the ship is i, damage state d at time t and that

defensive weapon i is firing at cruise missile j at

time t (a function of t for each 1 < i < W, 1 < j < M

and each d);

Pij(tld) = conditional probability that defensive weapon system

i will be firing at cruise missile j at time t, given

that cruise missile j is still alive at time t and
that the ship is in damage state d at that time (a

function of t for each 1 < i < W, 1 < <j M and each d);
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qd(t) = probability that ship will be in damage state d at

time t (a function of t for each d);1

I ed = conditional probability that, given that the .ship

is in damage state e, it will be in damage state d

after the impact of one more cruise missile2 (all e,

d).

In addition, for each j = 1, ---, M, let t and t+ denote times satis-
t < t. < t+  -w t Put

fying which are both very close to tj. Put tM+l = tM+l
t +  

=
M+1 k r

The kill rates kij(tld) defined above express the lethality charac-

teristics of defensive weapon system i with respect to cruise missile j

at time t when weapon system i is firing at that cruise missile at that

time. Whether or not a weapon system is firing at cruise missile j at

some time depends (according to the assumed ship's weapon assignment

logic) on whether or not cruise missiles 1, 2, ..., j-l have been de-

stroyed or have impacted the ship by that time. Therefore, since cruise

missile survival is here treated probabilistically, so too must be the

assignment of defensive weapons to cruise missiles at any time. The fir-

ing probabilities pij(t) defined above, express the probability that

1The damage state probabilities qd(') may be interpreted as ship survival
probabilities as soon as a suitable subset of the damage states is identi-
fied with ship survival (and the complementary subset with ship non-
survival). We do not here make this association, preferring instead to
leave this to the user of the model. The qd(') are therefore made avail-
able as outputs of the model and this is regarded as being equivalent to
outputting a ship survival probability as a function of time.

2lt is assumed that the zed are known and available as input data.

4
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weapon system i is firing at cruise missile j at time t, given that cruise

missile j is still alive at that time.

Now consider a time t with 0 < t < tI. Since none of the cruise

missiles can have impacted the ship by time t, we have

(1 if d = u,
qd(t )  =(0 <_ t < tl)  (1)

0 otherwise. (

In particular,

I if d = u,
qd~t ) -(2)

0 otherwise.

Next, choose a small 6 > 0 such that t + 6 < tI. Since none of the

cruise missiles can have impacted the ship by time t + 6, and since the

ship must therefore be in damage state u at that time

w
m.(tlu) - [I - 6 • I pij(tiu)kij(tiu)] if d=u,i=l

mj(t+6jd) = (3)

undefined otherwi se, (

for j 1, ..., M and 0 < t < t + 6 < tl.

Equation (3) can be used to determine the m.(tjd) for all d and all t in

the range 0 < t < tI once expressions for the firing probabilities pij(tld)

iI
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in terms of the m.(tld) are available.' Specifically, one could use

(3) to first determine the mj(61u) for 1 < j < M. This information .can

then be used to determine p..(61u) for 1< i <W and 1< j <1M. This V
13

latter information could then be used in (3) to obtain the m.(261u),

etc. Continuing with this "bootstrap technique" would yield values of

the mj(tlu) and pij(tlu) at any desired number of points in the range

0 < t < tI. The following diagram illustrates the order of the computa-

tions:

I m.(OIu) m.(61u) m.(261u) m.(tlu)

pij(0lu) Pij(6Iu) Pij(26Iu) - - - Pij(tl u)

The analysis just given, as has been indicated, suffices to deter-

mine the mj(tld) and qd(t) only for times t < t,. We now show how to
compute these functions for times t > tI . To this end, choose

k(l < k < M) and suppose that the following functions and quantities

have all been determined as indicated:
2

1If the manner of dependence of the firing probabilities pij(tld) on the
cruise missile survival probabilities mj(tld) were simple, it would be
possible in principle to insert these functions in (3) (which is equiva-
lent to a system of differential equations) and integrate to obtain
formulas for the mj(.Id). An approach of this type is discussed in
appendix C. One may, however, anticipate that the integration may be
difficult if the pi.(tld) are complicated functions of the mj(.Id) and
of the assumed weapon assignment logic for the ship. In view of this,
it is better to plan to work with (3) in the form given by using suit-
able numerical techniques.

2This assumption is true whet) k = 1 as shown above (see equations (1)
and (2) and recall the bootstrap technique applied to (3)).

A
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(a) qd(t) for all d and all t<t

(b) qd(tk) for all d;

(c) mj(tld) for 1 <j <M, and d and all t< tk;

(d) mj(tk1d ) for l <j <M and all d;
(e) Pij(tld) for I < i < W, 1 _ j < M, all d and all t <tk

The probability qd(tk) that the ship is in damage state d at time tk
is given jy

q : E qe(t ) mk(tkJle) t ed (4)e
for all d. In fact, this relation persists for all t satisfying tk < t <
tk+l:

d(t= (t) mk(tkle) ed (5)e

for all d and all t satisfying t+Ipatclr
k t < tk4J* I atclr

qd(tk+l) q e q(tk) mk(tkle) kd (6)e e
for all d. Notice that equations (4), (5), and (6) are all computable in

the sense that the left-hand side of each can be determined from the

corresponding right-hand side because all of the right-hand sides involveonly probabilities which are, by the above assumption, known. Relation
(5) therefore shows that part (a) of this assumption remains true when k
is replaced by k+l. Similarly, (6) shows that part (b) of the assumption
remains true when k is replaced by k+l.

Next, note that the conditional joint probability that:

-the ship is impacted at time tk, and
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-the ship thereupon goes into damage state d, and

-cruise missile j(k+l < j < M) survives until time t tk,

given that the ship is in damage state e at time tk, is mk(tkle) •ed"

Hence

m k(tk1d) q d( k) = I mk(tkle) Zed e(t)
e

+qd(t+) " [mj(tkId) - mk(tkId)] (7)

for j = k+l,'", M and all d, whereas

m (t Id) = 0 (8)i k
for j=l,"', k and all d because cruise missiles l,.., k will have either

been destroyed or impacted the ship by time tk. Since the q(tk) which

occurs on the left in (7) are given in (4) in terms of probabilities

evaluated at time tk, and since these latter probabilities (together with

those that appear on the right in (7)) are all known, the m (tkld) on the

left in (7) and (8) are all computable.

Equation (8) persists for times t satisfying t < t < tk+ because

no cruise missiles can return to life once they have been destroyed or

impacted the ship:

mj(tid) = 0 (9)

for j=l, , k all d and all t satisfying t+ <t < t In particular,

mj(tk+1 1d) = 0 (10)
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for j-=l, .. , k and all d. Furthermore, an argument similar in, every

respect to that given before shows that

W
r mj(t+ Sd) mj(tld) • [1 - p ij(tld) ki (tld)]' (I)

holds for all j = k+l, ..- , M, all d and ali t satisfying t < t < t

This equation can be numerically bootstrapped to compute the cruise missile

, survival probabilities mj(tld) and the weapon system firing probabilities

pij(tld) for all t in the range tk < t < t This bootstrapping begins
k 13l,

with the choice t = t the values of the mj(tkId) which will then be

required in (11) being given in (7). The following diagram illustrates

the order of the computations:

m.(t + aid) m(tk+lld)

+3

13 k pijd;(, + 61d) - - - P (t+ Id)

In particular, the m.(t kjd) for i = .+l, ., M and all d are produced

as a result of this procedure. Thus, equations (9), (10) and (11) show

that parts (c), (d) and (e) of the above assumption remain true when k

is replaced by k+l.

The foregoing discussion, together with the fact that the above

assumption is true for k = 1, shows by induction that this assumption

is true for all k = 1, ..., M. This is to say that the output functions
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qd ') and mj(-Id) are computable for all damage states d and all cruise

missiles 1 < j < M. The formulas for performing these computations are

those which have been developed above. The procedure may be recapped as

follows1:

Step (1). Put k = land compute

1 ifd=uqd~t) =all 0 < t < t I  (12)

0 if otherwise a t (2

1 if d = u
q d(ti) ~0 otherwise (13)

Compute also 2 the m.(tlu) for 1 < j < M and 0 < t < t1 by numerically

bootstrapping the following differential equation:

mj(t+ u) = mj(t1=1) 6 Pij(tlu) kij(tlu) . (14)

Obtain, in particular, the values m (tlIu) for 1 < j < M.

Step (2). Compute

qd(te ) qe k)mk(tkld) ked all d, (15)

qd(t) =F e qed all d, all tk <t <tk+l ,  (16)

1Notice that the computations in step (2) of the algorithm should be per.-
formed in the order indicated because the qg(tt) which occurs in (18) must
first be computed as in (15) and the m (tkl ) which will be required to
start the bootstrapping in (21) must first be obtained as in (18).

2Note that the mj(tld) for 1 < j < M, all 0 < t < tI and d u are undefined.
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dq (tk+l) =Eqe(tk)mk(tk e) ked all d, (17)

e

1 L mk(tkle) Led qe(tk)
qd(t') e

m(t1d) +qd(tk){mj(tkId) - mk(tkld)}]m kI (18)

all k+l < j < M, all d,

0 all 1 < j < k, all d,

{ mj(tld) = 0 all 1 < j < k, all d, all tk <t < tk+l, (19)

mj(tk+ld) =0 all 1 <j < k, all d. (20)

In addition, compute the mj(tld) for k+l < j < M, all d and all t in the
+

range tk : t < tk+l by numerically boot-trapping the following differ-

ential equation:

m mj(t+6d)= mj(tld) • [1 - 6 Pij(tld) kij(td)]. a (21)

Obtain, in particular, the values m (tk

Step (3). Increment k by 1. if k > M, stop; otherwise go back to step

(2).

The above algorithm constitutes the overall mathematical structure

of the single ship/multiple cruise missile engagement model. In order

to carry out the above procedure, however, it is necessary to first deter-

mine values for the kill rates kij(ttd) and the firing probabilities

pij(tld). Although this could probably be done experimentally, it would

be difficult and costly to do so and would, moreover, provide only limited

insight as to possible improvements in weapon design and employment tactics
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for the ship. These problems can be avoided by using analytic models to

predict the kill rates and firing probabilities in terms of parameters

which characterize the cruise missiles and the ship's defensive weapon

systems. This will facilitate using the overall model to examine promis-

ing design and tactical improvements. Models for predicting the kill

rates and firing probabilities have therefore been developed and are de-

scribed in the next two sections.

2.2 Determination of Kill Rates

The overall mathematical structure of the single ship/multiple cruise

missile engagement model described in the previous section involved certain

"kill rates" which characterize the capabilities of the ship's defensive

weapon systems with respect to cruise missiles. Each kill rate ki (tld)

was the instantaneous conditional probability that defensive weapon system

i will kill cruise missile j in a short time interval [t,t+6), given that

cruise missile j is still alive at time t, that the ship is in damage state

d at time t, and that weapon system i is firing at cruise missile j at

time t. It was mentioned that kill rates for both types of the ship's de-

fensive weapon systems -- gun emplacements and SAM systems -- may be viewed

as being functions of certain parameters associated with ihe weapon systems

and the cruise missiles. The dependence of kill rates for rapid-fire gun

systems on such parameters has been described by [Bonder, Cherry and Miller,

1973]; for completeness, these ideas are discussed in section 2.2.1 below.

Expressions for the kill rates for SAM systems as functions of such param-

eters are developed in section 2.2.2.

f"
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2.2.1 Kill Rates for Rapid Fire Gun Systems

The approach used here to determine the functional form of the kill

rates for rapid-fire gun systems involves decompcsing the process by which

such guns kill cruise missiles into several parts.

Implicit in the notion of a kill rate' k(t) for a particular gun-

system/cruise-missile pair at time t is the assumption that the killing

of the missile by rounds from the gun is probabilistic in character. If

we further assume that the killing of the cruise missile at any time t

by each of the rounds from the gun which arrive at the cruise missile at

time t are independent events, then k(t) may be written

k(t) = r(t).SSKP(t)

where:

r(t) = rate at which rounds from the gun arrive at the

cruise missile at time t; and

SSKP(t) single shot kill probability at time t.

Note that the rate r(t) at which rounds arrive at the cruise missile

at time t is not the same as the rate at which the rounds were fired at an

earlier time2 t-tf (so as to reach the missile at time t) because of Doppler

effects arising from the motion of the missile relative to the gun. How-

ever, since the rounds from the gun travel so much faster than the cruise

missile, these Doppler effects will be small and may therefore be neglected.

The above equation For k(t) then becomes

k(t) = F.SSKP(t) (22)

'For purposes of this and the next section, it is convenient to replace the
notation ki-(td) for a kill rate by simply k(t). In doing this, it is
understood that we have in mind a particular defensive weapon system i, a
particular cruise missile j, and a particular damage state d for the ship.
2Here, tf>O represents the time of flight for rapid-fire gun rounds arriv-
ing at the cruise missile at time t.
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where:

F = gun system firing rate ( a constant which appropriately aver-

ages the burst and ioter-burst periods for the gun); and

SSKP(t) = single-shot kill probability at time t.

The firing rate F is here taken to be a basic descriptor of the gun

system. The remainder of this section is, therefore, devoted to the deter-

mination of the single-shot kill probability SSKP(t) at time t.

The method suggested here for computing single-shot kill probabilities

for rapid-fire gun systems is based on the following assumptions:

" for purposes of the computation of the SSKP(.), the cruise missile

is equivalent to an effective vulnerable area -- a plane area of

suitable size and shape in a plane perpendicular to the line of

sight between the gun system and the missile at time t;

" a round kills the cruise missile if and only if it intercepts the

missile's effective vulnerable area;

* rounds are aimed (at time t-tf) at the estimated center of the

cruise missile's effective vulnerable area at time t, but errors

in both the estimation of future position and in the delivery

points of rounds may occur.

Under these conditions, the single-shot kill probability SSKP(t) at

time t may be modeled as

SSKP(t) A(t)-p(O,O) (23)

where:

A(t) = area of the cruise missile's effective vulnerable

area at time t, and

-
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p(O,O) value of a probability density function of the two-

dimensional delivery error evaluated at the aiming

point.

The area A(t) of the effective vulnerable area of the cruise missile

will be a function of the dimensions of the missile, its aspect with

respect to the gun system at time t, and of the type of round (fuze or

impact) employed by the .gun. In detailed simulations, it is common to

model targets such as cruise missiles as consisting of several vulnerable

components with vulnerable areas in six directions: front, left, right,

up, down and rear, relative to the natural coordinate system of the target.

Areas associated with each direction are projected first onto a plane

perpendicular to the closing velocity vector between projectile and target,

and then onto a plane perpendicular to the line of sight between weapon

and target. It has been found, however, that simple approximations (such

as a spherical representation) to the multiple component model produce

results which are often satisfactory. It is expected that the spherical

model will suffice to determine the effective vulnerable areas A(t) of

cruise missiles, and these functions are therefore regarded as being

computable.

Consider next the intercept probability p(O,O). For each round, the

delivery error at the time of predicted intercept may be modeled as a threeSI
dimensional random vector x2  in which each component xi (i = 1,2,3) is

regarded as being a sumxi of a number of random variables xij associ-

ated with error sources which contribute to errors in the xi-dimension.

Under the assumptions that

-------A
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* for each i = 1,2,3, the xij are independent,

for any pair 1 _< il i2 : i3, the xil and xik are independent

for all j and k, and

* the number of error sources which contribute to errors in each

dimension is "large,"

the distribution of the miss vector xj may (by the central limit theorem)
Ix3

be approximated as a trivariate normal distribution without correlation.

To utilize the effective vulnerable area concept described above, the three

dimensional miss vector must be transformed into an equivalent vector in

the plane perpendicular to the line of sight between target and weapon.

This transformation may be accomplished by suppressing the range dimension

as described below. As will be seen, this transformation produces a bi-

variate normal distribution (with correlation) for the equivalent weapon

delivery error vector in the azimuth elevation plane.

The angle-like errors in elevation and azimuth are obtained by

multiplying angular errors by range. The assumption is made that direct

angular errors in gun pointing lead to equivalent angular errors in the

Cartesian coordinate system perpendicular to the line of sight. Sources

of the angular errors include the estimates of both angles, i.e., ele-

vation and azimuth, and estimates of the first derivatives of elevation

and azimuth passed from the tracking system to the fire control computer.

These errors thus lead to equivalent errors in lead angle effects. By

assuming that errors produced by the fire control computer are negligible,

and by neglecting the rotation of the coordinate system with railge, azi-

much and elevation axes in the time between prediction and tracking, it

may be concluded that azimuth, elevation and range errors produced by the

tracking system produce equal errors in gun pointing.

S1
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Range errors in the system arise from two primary sources. The first

of these is the tracking system which provides the fire control computer

with estimates of range and the first derivative of range. The second

source of range error is the estimation of muzzle velocity. This error {

is modeled as described below.

Suppose that the projectile at time of predicted intercept has veloc-

ity W in the direction (O,O,R) and that the miss vector at time of predicted

intercept has component Z in the range direction. It is easily seen that

the time required for the projectile to reach the target plane is approx-

imately Z/(A-W) where A is the rate of change of range. For small values

of R relative to the value of W this time can be approximated by Z/W.I With respect to the coordinate system with axes in the directions of range,

elevation and azimuth, and by neglecting rotation the target velocity can

be expressed as (AE, ER, A) where:

A = azimuth;

= azimuth rate of change;

E = elevation;

= elevation rate of change;

R = range;

= range rate of change.

The error component Z thus corresponds to errors in elevation and azimuth

given by ERZ/W and ARZ/W respectively.

The magnitude of the range error is the sum of errors due to the

tracking system, which are assumed to pass unaltered through the fire con-

trol system, and errors due to muzzle velocity variation. The latter range

error is modeled by:

4i
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/ tf Vt2
Range error = ff dV,I + stf (I + stf) 2 (M

where:

tf = projectile flight time;

V = muzzle velocity;

s = slow-down constant of projectile; and

dV = muzzle velocity error.

Under the assumptions made ab",e, probability distributions must be

obtained for the following errors:

(1) range;

(2) range rate;

(3) azimuth;

(4) azimuth rate;

(5) elevation rate; and

(6) muzzle velocity.

Since normality and independence have been assumed, mean or bias and vari-

ance are sufficient to specify the distributions required. Note, however,

that for any engagement these parameters are functions of time.

The following form for the probability density function of the miss

vector in a plane perpendicular to the line of sight between weapon and

target incorporates the parameters listed above.

Let the total range-like and angle-like errors have variances

given by:
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r = variance of total error component in range;

a = variance of total error component in azimuth; and

a e = variance of total error component in elevation.

Then transforming the range error into the azimuth-elevation plane

results in variances

C A 2 a 2 + ar2 A2  and
W2

2 2 2E2

E  "Oe + -r W 2

where:

2 = variance of equivalent azimuth error;
aA2
GE = variance of equivalent elevation error;

= azimuth rate;

E = elevation rate; and

W = shell velocity at time of intercept.

Assuming a two dimensional normal distribution and neglecting correlation,

the value of the probability density function at the target center is

I exp E BA2
2 raEaA 2aE 2aA"

where:

BE = bias in elevation;

BA = bias in azimuth (i.e., the mean vector).

One final factor must be considered, namely, the correction necessary

to account for the dependency between the errors associated with single
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rounds fired in a burst, i.e., errors common to all rounds in the burst.

The correction is obtained through consideration of the burst survival

probability, BSP, given the burst error and the single shot survival

probability SSP. Thus,

BSP = SSP
n

where n is number of rounds in the burst.

For any random variable X with mean x, put c X - x. Then

E[ex] = E(eX+ ]  E[eX+cex +-- ex]

2

= ex (I + 1 var(X))

2

Therefore,

n2

E[BSP] = E[exp (nin SSP)] exp n-SSP-] (l + E var (inSSP)).
2

Using a Taylor series expansion for xn(l-x) one obtains

-knSSP A exp + 2
27ra 12  [(,012a

where R, and R2 are the components of the burst error vector, al2 and 022

are the intraburst variances and A is the target vulnerable area. Biases

are ignored. Taking expectations,

A
-RnSSP= 1/2 1/2

27r(o 1 2+032) (a22+o42)

where 032 and 042 are the variances associated with the bivarlate normal

distribution of R, and R2. A standard calculation yields
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£I.

va=(G12+ 32) (02
2+ 4

2 )

var (SSP) (2+ 12)1/2(2 4  2+o 2f -1

Implying that the appropriate correction to the integrated kill rate is

tnBSP - nynSSP

2 2 2 2
zn 1 2 ( 2  3 1 ) I (2 +

aa 22a3 + 1 ) 2 212 1
( a(2 +, (2a+a ) /

This correction should be applied over each burst period; It should

be noted that if the higher order moments of InSSP are large, the

approximations used here are no longer valid. However, this is rarely

) C. the case with gun systems.

Assembling the methods and assumptions outlined above, the following

formula is obtained for the kill rate to which the correction factor

for inter- and intra-burst errors is applied:
FA(t) (_ (BA  B~

k(t) =2w HA1/ 2 HE1 2  exp I/2 (A +

where

HA =A 2R2 + oA2tf2R2 + Atf (V)

+ A2 tf 2  (a2 + ao tf2)

HE 'E ERz + ajtf2R + E2 t f2 R2 (,72)

+ E2t. R2 + a 2 2
, Rt)f
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and where:

BA = (baR + Ca) 2  (kiM2 )

BE = (beR + Ce)2  (Wml)

aA = OA12 + rA22  (tad2 )

=A1 variance azimuth sensing (rad2)

2 = variance azimuth gun-pointing (rad2)

CE2 = aEl2 + aE22  (rad 2)

E 2 = variance elevation sensing (rad 2)
El

2 = variance elevation gun-pointing (rad2)c°E2

a*2  variance azimuth rate input to rad2
A computer /

/rad2
a2 = variance elevation rate input to (se-d

computer /C

R = range (at intercept) (km)

tf = time of flight (sec)

2km2 0

OV = variance in muzzle velocity (e- )

V = muzzle velocity (m
At) = vulnerable area (ki2)

F = average firing rate during a burst (sec-l
and one interburst period (

A = azimuth rate of target (at intercept) (rad/sec)

E = elevation rate of target (at intercept) sec

FR
2  = variance range sensor (input) (km2 )

a;2 = variance range rate input to computer (kc
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ba = bal + ba2 + ba3  (rad)

bal = sensor azimuth bias (rad)

ba2 = pointing azimuth bias (rad)

ba3 = A R-1 bR tf (rad)

br = range sensing bias (km)

be = bel + b e2 = be3  (rad)

bel = sensor elevation bias (rad)

be2 = pointing elevation bias. (rad)

e2.

be3 - JR bR t f (rad)

Ca = Cal + CR R-1 A tf (km)

CR, = prediction error due to nonlinear (km)

flight in range direction
1

Cal, = prediction error in azimuth direction I (km)

Ce = Cel + CR R, E tf (km)

Cel = prediction error in elevation (km)

direction,

For the most part the parameters in the above list must be supplied by

engineering models which provide values for the parameters as a function of

ship systems hardware characteristics, cruise missile characteristics, and,

engagement geometry and time. Doning the initial stages of the project, work

was carried out to produce engineering models which predicted biases and

variances for radar systems. This work is described in appendix D to

[Bonder, Cherry and Miller, 1973].

'These must be evaluated as a function of the flight path in any specific case
unaer study.

-- -- - ----
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The effects of EW, in particular enemy jamming activities, are por-

trayed in the model through the effect5 of these activities on system per-

formance measures in the above list. The basis of engineering models

capable of predicting the relationships between certain types of jamming

and performance characteristics of radar systems is described in appendices

A and B to this report.

2.2.2 Kill Rates for SAM Systems

Recall that the kill rate' k(t) for a particular SAM system/cruise

missile pair at time t was defined as

6-k(t) = conditional probability that the cruise missile is

killed by the SAM system in the time interval [t,t+6),

,given that the missile is still alive at time t and

that the SAM system is firing at the cruise missile

at that time.

The probability 6.k(t) that the cruise missile is killed by a SAM from the

SAM system in the interval [t,t+6) can be taken in the form

6.K(t) = i(t).SSKP (24)

where:

i(t) = probability that the SAM intercepts the cruise missile

in the time interval [t,t+6];

'As in the preceding section, the notation .k(t) is used instead of
•kij(t d) to denote a kill rate because the damage state and the weapon
system 8 and cruise missile j to which it applies is understood.
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SSKP = conditional probability that the SAM kills the cruise

missile, given that it intercepts the cruise missile.

As the above notation suggests, and in contrast to the situation with

rapid-fire gun systems, the single-shot kill probability SSKP for SAMs is

here assdmed to be a constant'. The value of this constant, which may

depend on the type of cruise missile and. the type of SAM but not on time,

may be estimated'using existing models. It is regarded as being a funda-

mental descriptor of the engagement. The determination of the kill rate

6.k(t) is therefore reduced to determining i(t).

ISince, by assumption, the actual flight paths and speeds of the

cruise missile with respect to the ship are deterministic, the flight time

the SAM requires to intercept the cruise missile at any point along its

path can be determined for the particular SAM type and cruise missile type

involved. This flight time then determines when landing must have taken

place in order for the SAM to intercept the cruise missile at that point

on its flight path. One may therefore write

ot
i(t) = h(t-u) g(t,u) du (25)

4,o

.IThis assumption, which can be relatively easily relaxed, seems reasonable
because SAMs are (unlike rounds from rapid-fire guns) guided onto targets.

I " ' i 'i i.. .." i " ..I i ' .....i ' ''..... " i........I .. i i ... i
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where:

h(x).6 : Pr[SAM fired in (x, x + i)],

and

g(t,u) = probability density function for the flight time u

of a SAM fired to intercept the cruise missile at

time t.

Notice that the above development of i(t) exhibits the dependence of

this function upon the past in that the probability of intercept at time

t depends upon the status of the engagement at time t - u. Notice also

that neither of the functions h(-) and g(t,.) will be "smooth" because

the firing process is discrete and because the stochastic variation in

flight ,imes for the SAM will normally be small. However, in a limited

sense, this model removes the discrete nature of the arrivals (or

intercepts) of the SAMs at the cruise missile.

Under the assumption that the SAM flight time has relatively limited

variation -- say a small-variance uniform random variable added to a

deterministic time u(t) -- the above expression for i(t) can be written

u(t) +

i(t) = 6 • f h(t - u) du
2w duuf)-



iIf it is furthev ..ssumed, as seems reasonable, that the probability

6-h(t - u) that a SAM-is fired in [t -u, t - u + 6] has the constant

i, value1 6.ht for u in the range u(t) - £ < u(t) + k, the above expression

becomes

i(t) = 6 ht (26)

To determine the values of the ht for use in (26), it is necessary

to consider the process by which the SAM launching system operates. The

firing process from the SAM launcher can be described by a cyclic Markov

renewal process in which firing takes place at random intervals. As in

4the case of SAM flight times, the stochastic variation of these intervals

may be small, but the following analysis leads to a-result identical to

the deterministic case.

'As the notation suggests, the "constant" ht may have different values
for different times t.

*A
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Suppose that there are R rails on the SAM launcher, and consider an

R state Markov renewal process with transition matrix:

2 3 4 . .• M

1 0 F1(x) 0 0 . . . 0

2 0 0 F(x) 0 . . . 0

3 0 0 0 F(x) . . . 0

R F(x) -0 0 0 0

where

Fl(x) = probability distribution of time to reload.

F(x) = probability distribution of time between firings on adjacent

rails.

Further, let

= mean reload time.

T= mean inter-firing time.

For this process, it can be shown [Cinlar, 1969], that in the limit the

rate at which firings take place is given by:

T l + (R - I)T

'<
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The case of L independent launchers can be modeled by superposing the

models for the individual launchers. In this case, an extension of re-

sul U.in [Cherry, 1972] gives

L
T + (R -

as the rate at which firings of all the SAM systems take place. Using

a technique common to kill rate modeling, the probability 6.ht that a

SAM is fired in the interval [t, t + 6) can tnen be approximated by the

mean rate at which SAMs could be fired:

tL
( " t- + ( R- IT "

where Lt is the number of launchers available at time t - u (u bh6.c the

SAM flight time yielding intercept at time t).

Finally, it should be noted that the above discussion has dealt with-

the rate at which SAMs can be fired whereas the equations introduced in

the preceding section deal with the rate at which SAM's arrive at the

cruise missile. The rate at which SAMs can be fired does not correspond

to the rate at which intercepts can occur since a Doppler effect is

present due to the flight times of the SAMs and the motion of the tar-

get cruise missile. Let

t = time of first intercept,

t = time of second intercept,

T = time of flight of first SAM, and

T = time of flight of second SAM.

I.2

-- -- W,,-- -i'1
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Then the time between launchings is given by;

(t2 - T2 ) - (t1 - Tl)

: (t2 - tl) -(T2 - TI)

The length of the inter-intercept time period in the limit as the period

grows small is equal to the firing interval times 1 - DtTf where Tf is

the time of flight and Dt indicates differentiation with respect to in-

tercept time. The model firing rate thus becomes:

Ti + (M-l) T (1 - DtTf)

Note that the above rate corresponds to the situation in which

guidance channel constraints are not operative. In the case in which

guidance channel constraints are operative the rate at which SAMs can

be fired corresponds to the rate at which intercepts occur. Consider the

non-homogeneous Poisson process with:

-ftk(u)du

Pr[T > t] = e

For this process it can be shown that the mean rate of events over a time

period [Ot] is given by

(fk(u)du)/t.1"

Accordingly, approximate the mean rate of kills by the expression:
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M

f1(t) - - in mM(t)
j=l t

where

fi(t) = mean rate of kills in the period [O,t],

m.(t) = Pr[cruise missile j survives to time tJ,

M = number of cruise missiles engaged.

This expression reflects the number of kills per time unit; the rate

required is the number of intercepts. Consider a Poisson process with

parameter x and suppose that each time an event occurs in this process

it is recorded with probability SSKP. It can be shown that the recorded

event process is Poisson with parameter X-SSKP. Based on this analogy,

the approximation f(t) = SSKP-l  fl(t) is used for the firing rate under

guidance constraints. The firing rate used thus becomes

f(t) (1 - DtTf)

for those cases in which f(t) is less than the number of guidance channels

available.

2.3 Determination of Firing Probabilities

The firing probabilities pij(ttd), which measure the likelihood that

each weapon system i is actually firing at each cruise missile j at time

t, may be modeled as a function of:

. whether or not cruise missile j has already been destroyed

or has impacted the ship by time t; and

. the logic whereby the ship assigns defensive weapons to

surviving cruise missiles.
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It has been assumed (see the list of assumptions near the beginning of

section 2.1) that the ship uses a weapon assignment logic in which all

available defensive weapons are always assigned to the one cruise missile

which will, if not sooner destroyed, be the next to impact the ship. This

logic requires that the ship has the capability to evaluate the relative

threats posed by the surviving cruise missiles at any time. A conceptual

threat evaluation system that the ship might use for this purpose is

therefore briefly discussed in section 2.3.1. The manner in which this

threat evaluation system could provide data for the assumed weapon

assignment logic is discussed in section 2.3.2. Finally, expressions

for the firing probabilities which reflect the structure of the assumed

weapon assignment logic are developed in section 2.3.3.

2.3.1 Threat Evaluation

For a single ship/multiple cruise missile engagement, the relative

threat posed by each of several incoming cruise missiles may be

evaluated in terms of:
1

(1) the predicted length of time until impact;2

(2) the extent to which defensive weapon systems are already

committed to handling previously evaluated cruise missiles; and

'In the case of a multiple ship/multiple cruise missile engagement,
other factors, such as the value of each ship, should be added to the
list. of items in terms of which threats should be evaluated.

2Depending on the configuration and capabilities of the defensive weapons
on the ship, the position of a cruise missile at each time may also
be fmportant to an evaluation of the threat posed by the missile at that
time. For example, a cruise missile may be observed to be about to enter
a portion of its track which is not coverable by the ship's defensive
weapons because of, say, elevation or azimuth limitations of these wea-
pons so that the cruise missile, if not immediately engaged, will surely
impact the ship.
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(3) the extent to which defensive actions have been taken whose

outcomes have not yet occurred.

The length of time renaining until impact is clearly relevant to

evaluating the threat posed by an incoming cruise missile. Were it not

for items (2) and (3) in the above list, the threats posed by incoming

cruise missiles could perhaps reasonably be ranked solely on the basis of

remaining time to impact. Indeed, even when factors (2) and (3) are

acknowledged, one may still argue that ranking threats by remaining times

to impact regardless of the defensive actions which may have been taken

against some of the missiles and whose outcomes have not yet occurred

may be a conservative strategy. As (2) and (3) suggest, however, some

schemes for threat evaluation are structured to account for the fact that

resources already committed to a cruise missile may, after a time lag,

result in the destruction of that missile so that no further action against

the missile would be necessary.' However, the previously-made assumption

that the ship can redirect in-flight fire as long as the fire has not

reached the cruise missile at which it was last targeted effectively as-

sumes away items (2) and (3) in the above list. It is therefore consis-

tent to assume that the ship uses a threat evaluation system in which the

threat-rank of each cruise missile is the same as the order in which it

will, if not sooner destroyed, impact the ship and in which the threat

IThreat evaluation structures of this second type could be designed by
ranking threats by weighted remaining times to impact. The weights
assigned to cruise missiles would be functions of the probabilities
that these-missiles-will survive the defensive actions already taken.
Threat evaluations would then be accomplished in a computational envi-
ronment involving, in addition to the simple flight time calculations,
calculations of a more complex character.

I- --



44 1

rank of a cruise missile, once assigned, changes only when the missile is

destroyed or impacts the ship' and does not otherwise change in time.

This assumed threat ranking procedure will be used to provide input to

the assumed ship's weapon assignment logic which is discussed in the next

section.

2.3.2 Weapon Assignment

In a single ship/multiple cruise missile engagement, the objective

of a weapon assignment logic is to assign defensive weapons to incoming

cruise missiles in such a way as to minimize some measure of the damage

to the ship (e.g., expectcJ "damage", probability of impact of one or

more cruise missiles, etc.). To accomplish this objective, a weapon

assignment procedure should account for at least the following:

(1) the relative threat posed by each of several incoming

cruise missiles;

(2) the availability of defensive weapon systems; and

(3) the characteristics of the defensive weapon systems and

of the cruise missiles. ,

The relative threats posed by the incoming cruise missiles can be

determined by a suitable threat evaluation scheme as discussed previously.

The notion of defensive weapon system availability, as used above, in-

cludes a consideration of whether or not a given defensive weapon (to-

gether with its required support systems such as guidance links, gun

'Cruise missiles which have been destroyed or which have impacted the
ship may be said to have a null threat rank.
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pointing 'radars, etc.) is still alive as well as a consideration of whether

or not the weapon is already in use and, if so, whether or not reassign-

ment might be profitable. The characteristics of the defensive weapon

systems which are relevant to the weapon assignment process clearly in-

clude such factors as -range, accuracy, rate of fire, time of flight for

projectiles, etc.

Two weapon assignment logics have been described by [Forsyth etal.,

1973]1. The first of these procedures has the advantage of being ex-

tremely simple. However, it appears that this procedure may, when em-

ployed against cruise missiles, result in random weapon assignments. The

second procedure is considerably more complex; it involves:
2

*the ranking of incoming cruise missiles by threat (the

threat ranks may change in time and may depend on defensive

actions already taken);

*the establishment of categories of threat ranks;

*the-assignment of defensive weapons to cruise missiles

whose threat rank is in the highest threat category until

this category becomes empty (this may involve the

reassignment of defensive weapons assigned to cruise missiles

with threats in a lower category to cruise missiles whose

threats enter a previously empty higher category).

IBoth of the weapon assignment procedures described by Forsyth include
some aspects of what has here been called "threat evaluation" and been
viewed as being distinct from weapon assignment.

2The structure of this second weapon assignment procedure resembles that
of a "foreground/background queue", and advantage of this correspondence
could be taken in constructing a reasonably detailed model of the pro-
cedure.



The second of the above weapon assignment procedures appears to be the

more promising of the two.

In view of assumptions which have previously been made, namely,

that the ship uses a threat evaluation system in which

threat ranks of a cruisemissile, once assigned, change

only when the missile is 'destroyed or impacts the ship

(see the discussion in the previous section), and

that the ship has the capability to redirect in-flight

SAMs and/or gunfire tonew targets as long as these

projectiles have not reached the cruise missile at which

they were last targeted (sie thediscussion at the beginning

of section 2,0),

the assumed weapon assignment logic is a special case of the second weapon

assignment procedure described by Forsyth in which the threat categories

of the latter consist of singleton sets.

2.3.3 Determination of Firing Probabilities

The assumptions which have been made in the preceding two subsections

about the ship's threat evaluation system and weapon assignment logic may

be summarized as follows:

" the threat rank assigned by the ship to a cruise missile is the

samre as the order in which the cruise missiles will, if not sooner

destroyed, impact the ship;

" the threat rank of a cruise missile, once assigned, changes only

when the missile is destroyed or impacts the ship and does not

otherwise change in time;
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at any time during the engagement, all available defensive

weapons are assigned to the cruise missile having the highest

threat rank and remain so assigned until the missile is destroyed

or impacts the ship.

Recall that, by definition, pij(tld) is the conditional probability

that defensive weapon system i is assigned to (and firing at) cruise missile

j at time t, given that the ship is in damage state d and that cruise

missile j is still alive at that time. In view of the assumed threat

evaluation/weapon assignment logic described above, either all the ship's

available defensive weapons will be assigned to a particular cruise missile

at any time, or none will be so assigned. In particular, the available

defensive weapons will all be assigned to cruise missile j at time t if

and only if

* cruise missile j is still alive at timert, and

* either j=l or, if j > 2, cruise missile 1, ..., j-l have

beer destroyed or have impacted the ship by time t.

Thus

m I (tlu) if d=u and 0 < t < t
~m 1 (t~u)(27)

Pil(tld) = undefined if dcu and 0< t < t,

0 otherwise.

Moreover, we have on the one hand pij(tld) = 0 for all 1 < i < W, all d,

all 2 < j < M and all t > t. On the other hand, for all I < i < W, all d,

all 2 < j < M and all t < t., we have

pij(tld) = Pr[i firing on j at time tiship in d and j alive at

time t]
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- Pr[i firing on j and j alive at tiship in d at t]
Pr[j alive at tiship in d at t]

- Pr[l, ..-, i-I deed at t and j alive at tIship d at t]
Pr[j alive at tiship in d at t]

- Pr[j-l dead at t and j alive at tjship in d at t]
Pr[j alive at tiship in d at t] d

1/

Pr[j alive at tiship in d at t]

e*[Pr[j-l dead at t and j alive at tiship in d at t]

+Pr[j-l alive at t and j alive at tiship in d at t]l

-Pr[j-l alive at t and j alive at tiship in d at t]]

1 a
-[ alive at tiship in d at t] Q

Pr[j alive at tiship in d at t]

-Pr[j-l alive at tjship in d at t]]

1

m(tld) * [m.(tjd) - mjl (tld)]

=[l-mj_l (t jd)/mj (t jd)]. (28)

The third equality in the above string of equations follows from the fact

that, according to the weapon assignment logic, defensive weapon system i

will be firing at cruise missile j L 2 at time t if and only if cruise

I I
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C

missiles 1, ---, i-I are dead at that time and cruise missile j is alive

at that time. The fourth equality follows from the fact that the death

of cruise missile j-l implies that of the preceding cruise missiles, if

any. The sixth equality follows from the fact that the aliveness of cruise

missile j-1 implies that of cruise missile j (because of the structure of

*i the assumed weapon assignment logic). The other equations are merely

manipulative; they express facts about conditional probabilities or, in

the case of the last two equations, the definition of the mj(.j.).

Equations (27) and (28) may be used in (21) to compute the survival

probabilities mi(-Id) for the cruise missiles and the damage state

probabilities qd(-) for the ship for the case when the ship uses the threat

evaluation/weapon assignment logic which has been assumed. As indicated in

in the discussion which led to (21), the normal procedure would be to

bootstrap (21) numerically to obtain the survival probabilities mj(tld)

and Pij(tld) for all time t in each time interval [ti, tk+l) However,

the simple form of (27) and (28) suggests that it may be possible to

insert these expressions in (21) and integrate the resulting system of

equations directly, thus bypassing the numerical bootstrapping. This

approach has been examined. While it appears that the use of numerical

techniques cannot be completely avoided by using the analytic approach,

it is possible to reduce the numerical problem to a form to which simple

and well-known numerical methods can be applied. Details are given in

appendix C.

" , :- -j., ......j' l , ' j "j ... - - " .....- - - -........... i- v .......-~ . . .. -- ' -"
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3.0 RECOMMENDATIONS FOR FUTURE RESEARCH

The single ship/multiple cruise missile engagement model described

in the previous section has been developed to a point where computer im-

plementation and initial tryout is now appropriate. VRI feels that the

model has considerable potential as an aid to analysis of ship/cruise

missile engagements and that the model may be helpful in devising counter-

measures (e.g., improved or satisfactory weapon lethality characteristics

with respect to cruise missiles) to the cruise missile threat. VRI there-

fore recommends that computer implementation and initial tryout be scheduled.

VRI also recommends that the initial runs of the model include a varia-

tional analysis to establish the sensitivity of the model outputs to the

inputs. A high degree of sensitivity of the outputs to the inputs will

suggest the need for accuracy in the input data so as to ensure reliable

outputs.

In addition to establishing the extent to which submodeling may be

necessary for data generation, the initial trial runs of the model may

suggest that modifications to the existing model structure are appropriate.

While it is unlikely that changes to the overall mathematical structure of

the model would be indicated as a result of the trial runs, it must never-

theless be recognized that the development of most useful models is an

evolutionary process and that structural changes made in the light of ex-

perience gained in using the model cannot be ruled out.

Aside from the research which may be necessary for data generation or
evolutionary structural modification as mentioned above (the need for either

of which is not yet established), there appear to be two types of research

! ...., -T ,. j . .. ... . : , , ....: : _ .. . ... .. L ... , , . I
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which may be necessary in order for the model to realize its full potential;

these are:

r refinements - improvement in the flexibility or degree of

realism with which the model portrays engage-

ments in the scenario as presently conceived; and

• extensions -enlargements of the scenario that the model

portrays.

The most obvious example of a refinement to the existing model -- and

one which should be a high-priority objective of future research -- is the

portrayal of different weapon assignment logics for the ship. Indeed, the

ship's weapon assignment logic is one of the primary variables of the en-

gagement which is subject to the control of the ship, and so the degree to

which the model (as presently structured or as modified in the future) will

be useful in devising countermeasures to the cruise missile threat will

therefore be in direct proportion to the degree of flexibility the model

has in portraying different and varied weapon assignment loqics.

A second refinement to the existing model is the relaxation of the

assumption that the ship can redirect in-flight gunfire and SAMs; in

VRI's opinion, however, this is definitely secondary in importance when

compared to endowing the model with the capability to portray different

and varied weapon assignment logics.

The most obvious example of an extension to the existing single ship/

multiple cruise-missile engagement model -- and one that should receive

serious attention in the near term -- is the enlargement of the existing

model's scenario to include more than one ship. The result of research of

this type would be a "multiple ship/multiple cruise missile engagement

i ...... . ...... .... . .. .. ..... ... . ... . . .. .| . . . . l i i - ... ... . ... - .... . ... .. ...... . . .... .. . ... . . .. .. . ... .... IiI I .. ... . .... ,
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model" which could be useful as an aid to planning for fleet air defense

against cruise missiles. It may be expected that such a multiple-ship

model will at least superficially resemble the single-ship model and may

in fact have a closely parallel structure, so that the single-ship model

may be regarded as being a prototype of the multiple-ship model -- a

natural step in an evolutionary chain of models. The fact that present

Navy doctrine often calls for ships (some of enormous value in terms of

construction cost) to travel in company, together with the serious and

recognized threat posed by cruise missiles, suggests that the multiple

ship model be developed as soon as practicable.

............
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APPENDIX A

RADAR ANGULAR AND RANGE TRACKING ERRORS:
AMPLITUDE COMPARISON, SEQUENTIAL LOSING AND ANGLE TRACKING

A submodel for predicting values of the angular tracking errors for
r 2  r 2gun-system radars (these are the quantities denoted by aA1 and aA2 in

section 2.2.1) in the presence of enemy jamming is described in this

appendix. Theoretical lower bounds on the variances of angle error

estimators are derived, and some of the most commonly used error estima-

tion techniques are analyzed to determine how closely they approach

these theoretical lower limits (Cramer Rao-bounds).

More specifically, this appendix derives the Cramer Rao bound on the

variance of error angle estimators and then discusses in some detail one

implementation of such an estimator called amplitude comparison, sequen-

tial lobing. The first and second moments of the conventional sequential

lober are derived and comparisons are then made with the Cramer-Rao bound.

The derivation is largely based on an unpublished report1 issued by Tech-

nology Service Corporation [Lank, Pollon, 1969].

Appendix B will discuss a second technique called amplitude compari-

son monopulse, which is also used to obtain angle error information.

The results concerning angle tracking errors can be directly used

as an input to a target tracking analysis. See, for example, appendix

D in [Bonder, Cherry, Miller, 1973].

Complex signal notation, as shown for example in [Miller, 1969] and

[Reed, 1962], is employed. The notation E(.) stands for the expectation

IThe report appears in IEEE Trans. Aerospace and Elect. Sys., Vol. AES-lO,
No. 3, May 1974, pp. 393-397.
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of the quantity in the parenthesis while Re(-) and Im(-) stand for the

real and imaginary parts Pf the indicated argument. A superscript *

denotes the conjugate of a complex number, and absolute values are

denoted by 1o1. A superscript p denotes the transpose conjugate of a

vector or matrix.1

A.1 Cramer-Rao Bound: tIoncoherent Processing

It is assumed that M noncoherent received waveforms or pulses are

to be processed in order to obtain the direction and the magnitude of the

error angle, denoted by c, between the target direction and the zero track-

ing error direction (which is usually the axis of symmetry of the antenna)

in one dimension or coordinate. The purpose of this section is to derive

the Cramer-Rao lower bound on the variance of an unbiased estimator of

which utilizes the following complex observables when noncoherent pro-

,cessing is employed:

10

Z = AGm()e i + Vm'  m= l,...,*M, (Al)

1Other notation will be introduced as needed. All notation used in this
appendix is independent of that used elsewhere in this report even though
some overlap occurs.
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where

is the error angle between the target direction and

the zero tracking error direction,

G(-) are the normalized two-,omy antenna vol tqage patterns

measured relative to the zero tracking error direction,

A is the observable amplitude which is normalized with

respect to the antenna beam boresight direction.

0m is the phase of the mth observable,

M is the number of noncoherent received waveforms that are

processed.

The Vm are the signals caused by system noise and are zero mean, complex

Gaussian random variables which are assumed mutually independent. In

addition, the in-phase and quadrature components (real and complex parts)

of each Vm are assumed independent with the same variance G . Under these

conditions, the complex Gaussian random variables Vm have the properties

[Reed, '1962]

E(V V*) = 2a2, E(V V)2 8
m m rn M

.1: 1The receive pattern is not necessarily the same as the transmit pattern
and distinct observables may be received with the same antenna pattern.

2The case when the phase is the same for each target signal, i.e., monopulse
processing, will be discussed in appendix B.
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and all other first, second, third, and fourth order moments are zero, where

Cr is the variance of the in-phase and quadrature noise variates,

* is the complex conjugate operation.

The complex probability density function of the Zm can be witten as

p IZ

pt 1,..., [ - K (Z -)J , (A2)

where

SH=A V=A )

.ZM  Gp (e€ ) (VM

C is a normalizing constant,
K: E(vvP) = a21,

I is the identity matrix,

P is the conjugate-transpose operation.

There are M + 2 unknown parameters: e, A, e m = ...,M.
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The likelihood function can now be written as

L kn p = 2n C - 2 ZPZ - 2Re(ZPH) + A2  (c) (A3)2a m
where

,- is the real par.,

all su',ao" go frc:, 1 through N.

Expanding the middle term of (A3) it is seen that the likelihood function

can be written as

L zn C [zPZ- 2AZG ()(xm cos em +y sin a) +,A2Zc2( )] V
(A4)

Making use of (A4) it is seen that the (M + 2) x (M + 2) Fisher in-

formation matrix has the form

1 = (ajk),

where

2 2
aN = L -- G (I

22 = E 2- ) C - G



1 21 -E (-a-)G2)

a . - = -E( 2L

IA, + 2 -0E - , k ; I, .,,

a + 2,1 O2

2,= -E k = l,...,M

aj + 2,2 =  O, J l,.,

Thus the information matrix N can be written as

N2 (As)

where

a 11  a12

a 21 a22
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Q is a M X 1.1 square matrix,

all other elements of N are zero.

If is an unbiased estimator of e, the error angle between the target

2direction and the zero tracking error direction, with variance a , then
2

the Cramer-Rao theorem states that a lo,.er bound for a , When noncoherent

processing is utilized, has the form

2 1 -2 > U.ji U, (A6)

w.,ere U1  is a vector having a one as its first element and zeros

elsewhere. Because of the form of N given by (A5) this can be written as

2r > U P-u (A7)

1 1

Making use of the expressions developed above it is seen that when

noncoherent received waveforms are processed (A7) can be written as

- G(m)m(C

(A8)

Mumi
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where R is the per pulse signal-to-noise ratio for each beam and it is

assumed that the target is located at the boresight of the beam,

A2  E

Eis the energy in each received waveform and N 0is the one-sided power

spectral density of the system noise.

For Mi = 2, which is the case when two antenna patternz are used to

derive the error angle c, it i's seen that (A8) can be write as.

G 2  2

2 _ _ _G 
( A 9 )

2R(G1 + G 2)G

1 2G
2  C61 ) 2 _

in [Hotstetter& Delong, 1969].
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A.2 C'ramer-Rao Bound: Cohei' ;,t. Processing

If we use the same-notation as developed in the previous section,

then the complex radar observables when coherent processing is employed

have the form

Z AG (W)ei(WmTm- ) + Vm, m1,...,M (AlO)
mm

where

W ,, is the doppler frequency (assumed very much smaller than the

transmitted center frcuency),

Tm are known time delays relating the times of occurrence of the ZM.

For convenience it is assumed that T, = 0.

e is the unknown phase corresponding to the first observable.

Thus there are four unknown parameters: E, A, w, e.

The likelihood function corresponding to (AlO) can now be written as

L =n 1 2 - 2A G (E)l{ xm1 cos (-m- 6) + y1, sin (WTrn e)}.. ~~202mmY -

+ A2 G2 Ce)] (All)

The elements of the 4 x 4 Fisher information matrix

4.,

I'] : (a..)

... .. l ll li 1 I i f I 1 1 I i q ';........ 'I'' '' . ... .. . . . . . ." . .. . .... .3"



68

have the following values

all :-E A (Gm(

a22 -E G

a1 2  a2 1  = -E A 2 ,

a

'13= a31  = -= \ aEl iFj

a4= a4 1 =-[ =-, :
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a23 a 3 2 = -E 0

a2 4 = a = -E 0 0

Thus by using the same prccedure as employed in the previous section it can

be shown that the lower bound of the variance of an unbiased estimator

of e, the error ancle between the target direction and the zero tracking

error direction, is also given by ( A8 ) for the case of coherent pro-

cessing. Therefore, the Cramer-Rao lower bound is the same if either non-

coherent and coherent processing is used to obtain an estimate of the error angle.

If tha signal-to-noise ratio is high enough, then well-designed

processors should achieve about the same performance, in terms of estimator

variance, for either non-coherent or coherent radar systems. This point is

noted, for example, on page 28 of the paper by [Hofstetter and DeLong, 1969].

Therefore, from this point on we shall only discuss angle estimation for

noncoh~rent radar systems.

; ' " i ..... i .. ... .... ... .. .i .. .. i ...i ......... I .... ..... .................. ...... ' I .... I i .. .... i ..... .. ... II........ i .... ...I ....
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Expression (A9) -ives the Cramer-Rao lower bound on the variance

of an unbiased estimator of the tracking error angle c when two received

waveforms are used to derive the tracking error signal. If M received

waveforms are processed for each of two antenna beam positions then it is

easily shown that the expression for the lower bound must be modified to

read

_ 2

G2 (A12)
1I 2

G I G2

where the notation given in the previous sections is used. Almost all

operational tracking error estimators use the received signals from

two antenna beam positions to derive tracking error information and the

remainder of this paper will only be concerned with such two beam estimators.

From this point on it will also be assumed that each antenna beam is

symmetric about its boresight direction and that the beams are squinted

or offset by the same amount on either side of the zero tracking error

direction (which is usually the syrmetry axis of thq antenna). The same

antenna pattern (referenced to the boresight direction) is assured for

each of the beais., The ancile bec,;,'en the zerr,-tracking error direction
a . n e ant.r, b'; ,un Lo, s '

J,-r i dic gction; will .not.. by . A, i , uAe
o..... cm try involved is giv en in "Uiqurc - AI..



71

~iretiof ofArriing igni 7 ~c ~ - Zero Tracking Error Direction

goresight of/ Boresight of
Bean num~ber 2 --7- ' Beam number 1

Antenna Antenna
Beam number 2 4ZBeam numberI

*All angles are measured in the counter-clockwise direction

- Is the tracking error angle

6 is the antenna beam squint or offset angle

P (.) is the normralized two-way antenna voltage pattern measured

with respect to the beam boresight

GI()and G 2(-) are the nccmali1zed two-uay antenna voltage patterns

of beam numbher 1 and beam number 2, respectively, measured

with respe ct to th? zero tracking error directiJon.

FIGURE Al: TWO-BEAM GEOMETRY



From figure Al it is seen that

G = P(6 + G)(C)G=(P)-6 + E). (A13)

We now assume that c is a small angle so that P(6 + e) and P(-6 + e) can

be approximated by the first two terms in the Maclaurin expansion to

obtain

GI( ) P(6 + E) P(6) + EP'(6)

(A14)

G2(c) : P(-6 + E) P(-a) + P'(-6).

From the symmetry of an antenna bean it follows that

P(-a) 6 P(6 ) , P(-6) = -P'(S) , (A15)

so that (A14) becomes

G(s ) : P(6 + ) E P() -+ P'(6)

(Al6)

G2p(()
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if If w; now substitute (A16) into A12) the following expression is

2 > 1 2 EB(A17)S - PBCR

In this equation BCR is the Cramer-Rao lower bound on the variance of an

unbiased estimate of the tracking error E when the conditions illustrated

in figure Al are satisfied.

To illustrate the type of result that is obtained we shall assume

that the normalized main lobe of the one-way antenna voltage pattern can

be approximated by a Gaussian beam shape and that the normalized two-way

pattern can be represented as

P(p) = exp 2K (A18)

1

where i is the half-power beamwidth and K = 2 tn 2 = 1.3863. As will

be shown, the assumption of a Gaussian beamshape leads to a very simple

result and is perfectly adequate for most radar system investigations.

If we now substitute (A18) into (A17) the following expression is

obtained for the lower bound

12 > 1I exp 4K (A19)

This rneans that P (- 1): '
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'W2 next detemine that value of a which minimizes the right hand side of

equation (A20). If we denote this optirial squint or offset angle by

60, then by differentiating the right hand side of (A20) with respect

to a it can be determined that

_ 2 -- (0.4247) 1  (A21)60 2 NF"

Furthermore

P(6) = Xp

P'(6o) = (- 1)exp (-1)0 ~ 6 0

If we now substitute (AZ1) into (A20), the following expression is

obtained for the lower 1oound when the optimal squint angle 60 is chosen

2 2
2 e)
E- 32MR tn2

or

2

C2  > (A22)

MIR
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is the half-power beamwidth of the one-way pattern,

M is the number of pulses processed per beam position,

R is the per pulse signal-to-noise measured relative to the nose

of a beam.

Most angle processors come close to achieving the lower bound given

by ( A22 ) and for most analysis purposes it is adequate to use this lower

bound as the variance of an estimate of c, the tracking error angle. The

next section will discuss one technique that is utilized for computing the

tracking error angle. As will be shown, this method, called sequential

lobing, asymptotically achieves the variance given by ( A22 ) with increasing

signal-to-noise ratio, R.

A.4 Amplitude Comparison, Sequential Lobing Angle Estimation

one method of obtaining the direction and the magnitude oF the error

angle between the target direction and the zero tracking error direction

(which is usually the axis of the antenna) in one dimension or coordinate

is by alternately switching the antenna beam between two positions (see

figure Al). The difference in amplitude between the voltages obtained

in the two switched positions is a measure of the ang,,lar displacement of

the target from the 2ero tracking error direction or switching axis. The

*sign of the difference determines the direction that the switching axis

must be moved in order to align the axis with the direction of the target.
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Two additional beam positions are utilized to obtain the angular

error in the orthogonal coordinate. Thus a two-dimensional sequential

lobing radar might consist of a cluster of four feed hours or ports

illu minating a single antenna, arranged so that the right-left, up-down

sectors are covered by successive antenna beam positions. A cluster of

five feed horns might also be employed, with the central feed used for

transmission while the outer four horns or ports are used for receiving.

ligh power RF switches are not needed in the latter arrangement since only

the receiving beams, and not the transmitting beam, are switched.

In this section we shall derive t'e statistical properties of the

usual sequential lobing angle estimator that can be implemented by the use of

envelop , detectors. The discussion will concern a one-dimensional, two-beam

system of the type shown in fijure Al. Each beam is assumed symmetric about

i.'s bor~sioh direc:tio, and the b2,s -'.re assu-rxd to be squinted or offset

by the same amount on either side of the zero tracking error direction.

The analysis will first consider the case where only one received waveform

is processed per beam positicn. The case where multiple waveforms or pulses

are processed per beam position is discussed in the latter portion of the

section. The analysis will employ the same rotation and terminology as used

in the preceeding sections.

A small tracking error will be assumed so that we can use the approximations

P(6 + -P() + P'(S),

(A23)

P(- 6 + C) P'6) "PS(S) ,
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where

P(-) is the two-way normalized antenna pattern for each beam,

4 is the beam squint or offset angle,

C is the tracking error angle (assumed small).

Because of beam s~ymetric we have

P(-6) P(6)

(A24)
( P'(6)

A.4.1 One Waveform or Pulse Processed Per Beam Position

One frequently used error angle estimator, when one pulse is processed

per beam position, has the form

2 2
1Z21 - IZIA

C= a *Z1 I' (A25)1z212 + Iz.1 2-

where the normalizing constant a is chosen so that when there is no

noise present we have

C (A26)
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We shall first derive an expression for a.

From the preceeding sections, it is seen that when no noise is present

we have

IZ11 = AP(S + E)

(A27)

1Z2 1 = AP(-6 + )

SO th~l Utilizing th-r anek ap-roximations given by (A23) v,,e have

2* 2

" ' -I = . - J (A28)

and thus

a NO (A29)

When a Gaussian shaped main lobe is assumed of the form discussed in

section A.4 and when a is selected to obtain the smallest Crame'r-Rao

lower bound, then the constant a has the value

zI
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(A30)a = --- (0.2123), ,

where €1 is the half-power beamwidth.

We shall next determine the density function and the mean and variance

of the estimator E given by (A25) when noise is present. It is first noted

that the probability density finctions of 1Z11 and 1z21 , which will be

denoted by fI(r) and f2(r) respectively, are

f,(r) 2~ exp (r2 + A P(6 + I~ (rAP(6s +c

(A31)

f 2(r) o eAp[ -  1i(r2 +A 2 p2 (-6 + s))] Io[- e(r(rAP(".6 + c

2 2
S' .R C f, on. (A21)
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where 0 < r and IO(N is the modified Bessel function of first type and

order zero. Equation (A30) expresses the classical result that IZ11

and IZ2 1 have a Rice distribution. If we now define the random variable

s, for 0 < s, with density function g(s), as

s = 1T 21(A32)

then from page 53 of [Miller, 1964] it is seen that g(s) can be expressed

as

g(s) 2 - 2 Z exp L (Rs 2 + P2)/(1 + s 2

(l + R2 ) s 2

x 2s_ R I 2s IP2l (A33)

(0+ s) + s

2sI+ 2s '_I2 x iPTR 2 A33

L 0 + + SA
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r where

lij(.) is the modified Bessel function of first type and order one,

it

Rp(6 L = RP2( + C)

R2  A2p2 (-6 + C) RP2 (-6 +
2a

R = 2 is the per pulse signal-to-noise ratio for each
2a2

beam when it is assuned that the target is located

at the boresight of the beam.

It is seen that the random variable s is the ratio of two independent Rice

variates since the additive Gaussian noise associated with each pulse or

waveform that is processed is assumed independent.

We next define the modified signal-to-noise ratio R0 as

R 0= P 2 ( ) (A34)o

where 6 is the bea,, squint or offset angle zero tracking error directicn.

R0 can b2 considered as the effectivp signal-to-noise ra'Jo eue to the

sqijnirin j of the antenna beamrs.

I
When a Gaussian shnped iLain lobe is assumed ard w,,en 5 is choen to
otinal squint angle defined in , Lrh prcviou; s2cLion, thec.

-I .( ., 7 ;
0O
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We now see that the estimator can be expressed as

^ 2

€=a -10{ <_ s (A35)

where the density function of the random variable s is given by (A33)

In order to find the probability density function of the following

identities will be needed.

S2 + I+l (a)s +1 ]

2 = 2R0

R- PR1  -4 RP( )P'( ) = 2Ro(a-)

S2 + +1

P2 '+ RI = 2R0 3

IsI
2 '1 0oa

Q R

21"1

2
Jj 2
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where the latter four identities utilize s.rall angle approximations which

are valid since the error angle E is assumed small.

If we now make the change of variable fro.i s to given by (A35)

and utilize the above identities it can be shown that the probability

density function of C, denoted by h(2), can be written as

2 2a(a (a

R )2

X 1 + 1]R I L

2( E 2 )J IR_

for

-a < £ < a

In order to compute the moments of the estimator w .ae shall find its

moment generating function G(s) which is defined as

a

SGO) ed(A37)
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Making the change of variable c = a cos it is seen that the mr.nent

g3ner-ating function can be expressed as

iT

G(s) = y (1 + Ro ) exp (-R 0 sin 0 exp (a cos 0)I( sin )dO

0

+ -(j.)R o exp (-Ro0) f sin 4b cos 0 exp (a cos O)oBsinfl d

IT

+ 1 exp (-Ro) sin 2 exp (a cos Ii($ sin 5)d (A38)

0

where

R = ER 2
= v (a)

so that

2 2 2 02 .o 2 22- c R 0 s-it S (A39)
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The three integrals given in equation (A38) are evaluated in the annex

to this appendix, and the moment generating function G(s) can ultimately be

evaluated as

G(s) I + R ) e-R (ey-e-Y)

R~~~ 22yR

+ 22  e- (ey + e-Y)  (ey  e-Y )  (A40)

where y is given by (A39). It is easily checked that G(O) 1 which must

hold since h( ) is a density function.

Now

E(9) dG ( ) s=O (A41)

which after some algebraic manipulation is evaluated as

t E(^) E 1 --L + 2R . (A42)
m2

ff0
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rlotice that ; is a biased estimator for roderate to small values of the

modified signal-to-noise ratio R., for example,

when R = 5, E(;) = (0.82)e

and

V hen Ro = 20, E(Z) = (0.95)c

As Ro  , i.e., as the noise goes to zero, it is seen that the

estimator becomes unbiased.

One common way that is utilized to remove this bias is to use the

estimator 1 instead of the estimator where

I z2 j2 - 1Z112

I =  a -7 -2-- - - -2, (A43)

1Z21 + JZlJ + b

and b is a properly chosen compensation term. The analysis of this estimator

and the selection of an "optimal value" of b is quite difficult and will

not be pursued further in this report [see Lank, Pollon, 1969].

Instead we shall consider the unbiased estimator c2 where

2 0

a -- -2 (A44)"!z +1

0 1 17,
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The estimator i2 has the disadvantage that an estimate of Ro, the
modified signal-to-noise ratio, is needed for its implementation. It is

seen, however, that the estimator is not very sensitive to errors in

estimating R0 over a large operating signal-to-noise ratio range. From (A40)

it is seen that the variance of v2 depends on the value of c being estimated.

For convenience we shall only compute the variance of 2 for the value

0 0. However, since the estimator Z2 is only suitable for estimating

small error angles, the variance for non-zero values of e will be closely

approximated by the variance of the 0" = 0 case.

It can now be shown that

(~~~~)~ (I; (eE- 2 ~ +.i 2 o] (A45)C=O 0

Therefore, since

a - ( , o = RP2(S)

it follows that

p l(A46)

"o/i iinh 4RLP'(i)] 2  C

I

,hiW:, i', nct present in tna estimatcr .

["I
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flow from equation (A17) of the previous section it is seen that BCP is the

CramEnr-Rao lower bound on the variance of an unbiased estimator of E when

one pulse or received waveform is processed per beam position (i.e., when

ri = I).

Finally, we obtain from (A45) and (A46)

[ (3 4 2RO°  (1 - e-2R° )

" 2R°  + R)
V ir(c2 F (1 - e-2R) 1 (A47)

1 1 01R o 2R J

From (A47) it is seen that Var (221c = 0) approaches the Cramer-Rao lower

bound with increasing signal-to-noise ratio R0 . however, even for small

values of R the estimator c2 is remarkably efficient. For example,

when Ro  M 5, Var ( 2IE = 0) _V (.I13)BCR *

It is of interest to note that if the bias present in the biased estimator

given by expression (A42) can be "lived with" then the variance of this

estimator is less than the Cramrr-Rao lower bound on the variance of an

unbiased estimator.

A.4.2 M Waveforms or Pulses Processed Per Beam Position

t- orccedirj an ly K ias asured fUat one p,.;Ise or received wavelForm

IS pr,:- : .d p~r ba.,7 po-i tion. If ijuls2!, ,s prco.esed per b.zara posii.inn,
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then expression (A12) indicates that the estimator £2 should be

modified to read

-1 2 2

_ a + (- e 1Z2j " lzljl
2 L o 2 2  _ 2

0 j=l IZ2il + IZ1jl

(A48)

where ]Z j and Iz2ij , for j sl,...,M, are the envelope detected outputs

from beam 1 and beam 2, respectively. This expression, which gives an un-

biased estimate of E, has a variance reduced by a factor of M with respect

to the estimator when only one pulse or pattern is processed per beam

p.-* ztion.

Frequently the estimator Z3 where

Z 2 _ Izl 2

S3 = k E[l 2ji 2 1 b l (A49)

and k is a normalization constant and b is a bias ccmpensation term is
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used instead of 22 given by (A48). The reason for using the estimator
E3 is to avoid the possibility of dividing by a very small number if the

amplitude of the target return signal is small. Nlo analysis of the

estimator E will be given in this report. A preliminary analysis is given

in [Lank, Pollon, 1969] under the assumption that M is large enough so that

Zlj 2 and jZ2jI 2

can be approximated by Gaussian random variables (utilizing the Central

Limit Theorem) for the purpose of computing moments. Also, no analysis

will be given in the report on how well the above estimators operate in

the presence of a fluctuating target signal. The analysis given above has

assumed that the amplitude of the received target signal remains essentially

constant over all the pulses that are processed.
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A.5 DISCUSSIONl

Section A.4 of this report derived the Cramer-Rao lower bourd on the!

variance of estimating the error angle between the target direction and the

zero tracking error direction. A very simple expression was obtained for

the case of a two-beam system where each beam is squinted at the same anqleS

on either side of the zero tracking error direction. The expression

obtained assumed that the main lobe of each of the two beams has the same

I shape and that the nornalized two-way power pattern can be approximated by

2

P(f) = exp (A50)

where , is the half-power beamwidth and K = 2 n2-= 1.3863. The expression

obtained also assumed that the two beams were squinted at an optimal angle

from the zero tracking error direction so as to achieve the best possible

lower bound. It was shown in section A.4 that this optimal squint or off-

set angle 6o could be expressed as

= (0.4247) (A51)

0



92

Under the above conditions, the following inequality was obtained

2

> , (A52)

- MR

where

1 is the Lalf-power beamwidth (radians) of the one-way voltage pattern,

M is the number of pulses or received waveforms processed for

each of the two beam positions,

R is the per-pulse signal-to-noise ratio measured relative

to the nose of the beam,
2.
a 2 is the variance of any unbiased estimator E of the tracking

error angle e.

The derivation of equation (A52) assumed that the noise variates added

to the output observables are incependent, zero mean, complex Gaussian

random variables whose moments are given by (A3).

Most error angle processors ccme close to achieving the lower bound

given by equation (A52) and for most analysis purposes it is adequate to

use this lower bound as the variance of an estimate of c, the tracking

error angle. Section A.5 discussed amplitude comparison, sequential

lobing which is one common technique used to accomplish error

angle e2tirmation. UnJar conditions of rocrerata .icn1-to-noiseratio,
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this estimation procedure approaches the variance given by the Cramer-Rao

bound. The procedure can be implemented by the use of envelope detectors and

is sequential in nature, that is, the signal pulses occur sequentially in

time. The two antenna beams are produced by using two separate horns or

ports to feed the antenna.

Another technique that is commonly used to accomplish error angle

estimation is called amplitude comparison monopulse. This procedure is

not discussed here and the reader is referred to the papers referenced in

section A.8 and to appendix B. The method employs a simultaneous-lobing

technique in which the RF signals received from two offset or squinted

antenna beams are combined so that the sum and difference signals are obtained

simultaneously. The sum and difference signals are then processed to obtain

both the magnitude and direction of the error signal. All the information

necessary to determine the angular error is obtained on the basis of a

single pulse, hence the name monopulse.

An amplitude comparison monopulse system is less susceptible to

errors caused by target cross section fluctuation since the returns from

both antenna beams are received at the same time. This type nf estimator

also achieves a variance which approaches the Cramer-Rao bound with in-

creasing signal-to-noise ratio. A derivation of the statistical properties

of this estimator will be given in appendix B.

For most radar systems the output error signal ^ is used to control a

tracking servo which positions the two squinted or offset antenna beams

so that the new zero tracking error direction corresponds to the predicted

target position when the next sequence of tracking pulses are emitted.



94

The direction of zero tracking error is changed by either physically moving

the antenna, as is done for the conventional tracking radar, or by

electronically moving the beams, as is done when a phased array radar

is employed. The tracking servo is usually either of the constant

velocity or constant acceleration type. The analysis of such a combination

is given in [Swerling, 1954]. Of course, the new zero tracking error

direction will not exactly correspond to the true target direction because

of noise effects in estimating the previous error angle (see equation (A52)

and because of servo noise. If the noise power is large enough it may

happen that the variance of the estimate of the tracking error may be

so large that there is a "significant" probability of the new zeio tracking

error direction being widely separated from the actual target directio,.

In this case the squinted antenna beams will not be positioned properly to

detect the next set of target returns and the tracking process will be

interrupted. This is one effect that intense noise jamming attempts to

accomplish in addition to increasing the tracking angle variances.

Equation (A52) can be used to evaluate the effect of CW noise jamning

on an amplitude comparison, sequential loLing, angle tracker. The value

of R in (A52) must be interpreted as the signal-to-jamming power ratio.

The jamming power is computed after taking account of the beam gain in

the direction of the jamming emitter. Usually the jamming enters through

the antenna sidelobes where the antenna gain is greatly ;-educed as compared

to the wain lobe gain. The signal-to-jarming ratio inust take account of

any ECCD1 capabilities present in the radar, for example, adoptive sidelobe

cancellation ,hich places nulls in the receive antenna pattern in the



95

receive antenna pattern in the direction of the noise sources. An

additional study would be required to analyze the effect of CW noise jarming

on an amplitude comparison monopulse system since the derivation of (A52)

assumed that the observables contained independent white, additive Gaussian

noise. Such would not be the case in a monopulse system where the returns

from both offset beam positions are obtained simultaneously. Another type

of jamming that may be present is large amplitude, short duration, pulse

jamming. The effect of such jamming is not considered in this report.

When two or more targets are present, the radar tracking system must

be capable of distinguishing between them if either one is to be tracked

accurately. Without range or velocity differences, the conventional

angular tracking methods cannot separate targets when they are separated

by much less than one beamwidth. The theory and design of such multiple

angle tracking radars is given in [Lank, Pollon, 1968] and [Pollon, 1968]

and is not considered in this report. These references derive the form

of the data processor and analyze the variance of the multiple angle

estimates and their relationship to the Cramr-Rao lower bound.

9
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ANNEX

The following expression is derived on pages 58-59 of [Miller, 1964]

r

22

ct +

w ,here Ik(- is the modified Bessel func-tiun Pf -First type and order k.

If we let n =2 in this expression and use the identity

s2 sinh(Z) I e Z  e-Z)

Yz- 1/2(Z) z -- 2-

then ,e obtain the expression

f sin 9 exp(a cos ) Io (o sin ,) d

ex 2 2) e: + B2) A2]

+I
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Si-milarly, if we let n = 4 in expression [A] and use the identity

jF 1 2(z)- =cosh() sijh(z); -27 ~ ~ ~ ~ ~ 3/ ( Z Z....... -

[z- eZ+& e (eZ eZ

then we obtain the expression

fsin2, exp(a cos ) 1 (i sn d

0

r

(2+ 02) ex (2P77-2) + exp(- ;a 2 + 7)

2 exp (;a exp [ A3]
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Finally, if we differentiate c-quation [A2] with respect to

we obtain the expression

sin cos expla cos (0o1 sin 4) d#

0

exp(I2 02) 2 B2

"a+ ; )  exp (J2+ +2 exp -a2+ 2

(M4]

r1

kt

tII
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APPENDIX B

RADAR ANGULAR TRACKING ERRORS: AMPLITUDE

COi4PARISON, MONOPULSE, ANGLE TRACKING

B.1 Introduction

A variation of the model described in appendix A for predicting

angular tracking errors for the radar tracking the cruise missile in

the presence of eneny noise jamming is described in this appendix. The

variation described in this aprendix differs from that of appendix A in

what is assumed about the radar's method of angular tracking; in appendix

A it was assumed that the radar uses a method called "amplitude comparison,

sequential lobing," whereas in this appendix it is assumed that the radar

uses another method called "amplitude comparison, monopulse." This

second method employs a simultaneous-lobing technique in which RF signals

received from two offset or squinted antenna beams are obtained

simultaneously so that they have the same phase. An advantage of this

method is a smaller bias with the same signal-to-noise ratio.

The form of the maximum likelihood angle error estimator is derived

for the case where the radar uses the amplitude comparison, monopulse

method. It is shown that this estimator can be implemented with a phase

detector. In addition, the first two moments of the monopulse maximum

likelihood estimator are derived and a comparison made with the Cramer-Rao

lower bound. The probability density function of the estimator is not

obtained. The bias of the monopu'se estimator is less than the bias of

the sequential lober as derived in appendix A.
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The same complex signal notation used in appendix A is used in this

appendix. The notation E(-) stands for the expectation of the quantity

in the p3renthesis while Re(-) and Im(.) stand for the real and imaginary

parts, and 1-1 stands for the absolute value. A superscript p denotes

the transpose conjugate of a vector or matrix and a superscript * denotes

the conjugate of a complex number.

The short bibliography started in appendix A is continued in Section

B.5.

B.2 Likelihord E,-uations a-d M=ixmu Likelihood Estimator

This section will derive the likelihood equations and the form of the

maximum likelihood estimator when a simultaneous-lobing technique is used

to derive error angle information. In this method the RF signals received

from two offset or squinted antenna beams are combined so that the sum and

difference signals are obtained simultaneously. All the information

necessary to determine the angular error is obtained on the basis of a

single pulse received through the two antenna beams, hence the name

amplitude comparison, monopulse is employed.

It will be assumed that each antenna beam is symmetric about its bore-

sight direction and that the beams are squinted or offset by the same amount

on either side of the zero tracking error direction (which is usually the

axis of symmetry of the antenna). The same antenna pattern (referenced to

the boresight direction) is assumed for each of the beams. The angle

between the zero-tracking error direction and the antenna beam boresight

direction will be denoted by 6. A picture of the geometry involved is

given in figure Al of appendix A.
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We shall first discuss the case when one received waveform or pulse

is simultaneously received by the two squinted antenna beams. The following

two complex observables are utilized in the derivation of the maximum

likelihood estimator:

Z, = A[GI (c) + G2 (c)] eie + V(8)

Z2 = A[GI (e) - G2 ()] e 0  V2,

where

Gi(.) and G2(.) are the normalized two-way voltage patterns of beam

number I and beam number 2, respectively, measured with respect

to the zero tracking error direction,,

A is the amplitude of the received pulse normalized to the antenna

beam boresight direction,

E is the angle between the target direction and the zero tracking

error direction,

e is the phase of the received signal.

The Vm are the signals caused by system noise and are assumed to be zero

mean, complex Gaussian random variables which are mutually independent. In

addition, the in-phase and quadrature (real and complex parts) of each Vm

are assumed independent with the same variance a2. Under these conditions,

the complex Gaussian random variables Vm have the properties [Reed, 1962]

E(V V*) = 2a2  , E(V V*)2 = 8a4  , (82)
mam mm

* and all other first, second, third, and fourth order moments are zero, where



a 2 is the variance of the in-phase and quadrature noise variates,

* is the complex conjugate operation.

An amplitude comparison monopulse system is less susceptible to errors

caused by target cross section fluctuation than a sequential lober since the

returns from both antenna beams are received at the same time. This

technique is particularly useful where pulse-to-pulse emplitude fluctuations

due to target variations or interference signals can degrade conical or

sequential scanning tracking techniques. The phase shifts through tUe RF

and IF portions of the system must be carefully equalized to maintain the

equal phase relationship in both channels that is indicated by equation

(B1). In addition, the tolerances between the receiving horns and the

comparator section of the feed ass-mhly must be very closely controlled.

This,.appendix will not discuss the degradation in tracking performance caused

by a phase unbalance in the two channels.

As illustrated in sections A.2 and A.3, the likelihood function L

associated with (B1) can be written as

L = lnC - JWlW-K! (B3)

where

C is a normalizing constant,

[Gi(e) + G 'O.

W u n q K A ead.

L7 2 J l(c) - G 2(C) J

The unknowns in equation (B3) are , A and e.
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Notw, *f P(.) is the normalized two-way antenna pattern measured with

resp..ct to beam boresight and a is the offset or squint angle associated

with each beam, then as shown in appendix A the following relationships

are approximately true when the tracking error angle c is small,

Gl (E) = P(6 + ) = P(6) + eP'(6),

G2(c) = P(-S + E) = P(S) - eP' (6)

It will also be assumed that the slope of the antenna pattern is almost

constant in the vicinity of the offset angle 6 and that we can use the

following relations for a symmetric pattern:

P(S) = P(S), P'(S) - P'(-S) (B4)

Using the above relationship it is seen that equation (B3) now becomes:

L = lnC - 2-F2 IW-KI,

where

C is a normalizing constant,

g = K -2A e

The three likelihood equations have the form:

at = L 0  aL= 0  . (B5)
D: aA Doa
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The first equation of (B5) leads to the expression

1 Re0Z2e-ie) (B6)
2AP"(S)

where Re(.) stands for the "real part of." The second equation of (5)

leads to the expression

A 2AI1 Re(Zle'i) • (B7)

where it is assumed that terms involving e2 and c times the voltage in the

difference channel can be neglected compared to the other terms.

Combining (B6) and (B7) we obtain

b Re (Z2e io )
Re (Zle 1 o)  (B8)

where b is defined as:

The last equation in (B5) leads to

Im(Zie ie) = ,9)

where Im(.) denotes the "imaginary part of" and again terms involving

times the voltage in the difference channel are neglected. It is easily

seen that (B9) leads to
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C ee~-io~ .ZI.

so that from (B8) the maximum likelihood estimates for c, which will be

denoted by C, can be expressed as

bRe(Z 2Z *)I K. (BlO)
I It is easily seen that t is consistant, i.e., if no noise is present then

;K,. E(C) = c . (BI1)

If we note that

Re[(Z 2 + iZ )zl~ l = Re(Z2ZI*) , (B12)

then it follows that (B12) cin be written as

bIZ2 + iZll Re (Z2 + iZ1 ) Zl (813)= izl, R L + iZl x T711LJ

Under conditions of small error angle c and moderate to large sigal-to-

noise ratio in the sum channel it follows that

Iz2 + z1l Sz I , (814)

Izl I

so that an estimator frequently used as an approximation to (813) is
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[(Z2 + i Z1 Zl*
=bRe X171135

The estimation given by (815) is very easy to implement with a phase

detector ubed to obtain the term of the form re(ab*).

The estimator given by (810) was first discussed in this form by (Mosca,

1969]. The estimator computes an angle estimate once per pulse. A simple

stretching or "boxcar" operation followed by low pass filtering supplies d-c

inputs to the antenna servo amplifiers. Additional references related to

this estimator are given by [McGinn, 1966], and [flnfstetter and Delong, 1969].

The likelihood function (83) can also be used to derive the Cramer-

Rao lower bound on the variance of an unbiased estimator of c, the tracking

error angle. Following the procedure given in appendix A and using the

small error angle simplifications given by (B4) it follows that the lower

bound can be written as

2 _ ( )2  BCR (816)

where a2 is the variance of any unbiased estimator of c and BCR is the

Cramer-Rao lower bound and the signal-to-noise ratio R is defined as

R - A2  (817)
2u

2

Equation (B16) can also be written as
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a~ Us

where R is the signal-to-noise ratio in the sum channel, i.e.,

Rs = P- r  1 (B19)s 2a

Equation (B18) indicates the bound on the performance of an unbiased

angle estimator as a function of the sum channel signal-to-voise ratio,

i . Rs , and a factor b which depends on the slope of the antenna pattern

ind the beam offset or squint angle 6. References in addition to those

listed above which discuss the v3riance of monopulse estimators are

[Blackman, 1971], [Lipman, 1971], [Kerr, 1968], [Sharenson, 1962],

[Manasse, 1960], [Nester, 1962] and [Urkowitz, 1964].

B.3 Mean and Variance of the Angle Estimator

We shall next determine the mean and variance of the estimator given by

(BIO), namely

= b(B20)
b2Re(Z2 Z1 )

1zi[

Since Z and Z have the joint density function indicated by (B3), the sim-

1 2

plist way to determine the mean of (B20) is to convert to polar coordinate

0 i02e
= r1e = r2e (B21)
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with Jacobian rir 2 . In these new coordinates, the estimator becomes

r2
= b rCos (r2-0l) (822)

and the expression for the mean of ^ becomes

E(;)=rlr2 ftr lr ,r 2, ,e 2 ) dedo2 dr 1dr 2

0 00

where A is given by (B22) and f(rl,r2, 01, 02,) is the joint density function

in polar coordinates. Rather than provide all details of this integration

we shall instead indicate the key steps.

The integration with respect to 01 and 02 can be performed using the

identities

27r

J docos(-o)exp[acos( -o)] = 21ll(a), (B23)

0

27r

J dcsi( -o)exp[ccos(p-e)] = 0, (B24)

0
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where indicates the modified Bessel function of first type and order

1. Equation (B23) is the standard definition of the modified Bessel function

and (B24) can be directly integrated after making the change of variable

y = cos (p-e).

The interqrations with respect to rI and r2 are performed using the

identities

dxx e- X 1 (yx) -a21Fl (2 ;2 (B25)

= 4c I ;41) (B25)

0

where 1F1 (..,.) is the confluent hypergeometric function. A listing of

such integrals can be found in [Miller, 1964 appendix 1].

We can convert the hypergeometric functions to more recognizable forms

by using the identities

IC
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1FI(2;2;x) = ex (B27)

1 F1 (;2;x) = x-eX-1], (B28)
x

which can be found in [GPO, 1964, page 509].

The final result after performing all the integrations is

E(C) = E[l-exp(1R s) (B29)

where Rsis the signal-to-noise ratio in the sum. channel given by (819).

This equation corresponds to equation (20) of the paper by Mosca, which was

not derived, and is also the same as equation (30) in a report by McAulay.

The McAuley report derives this equation in an entirely different fashion.

Equation (B29) shows that ; is a biased estimator, however, the bias is

negligible when the signal-to-noise ratio Rs is moderate to large. Comparing

equation (B29) above with equation (25) of the paper by Lank and Pollon, which

gives the analogous expression for an angle tracking radar employing sequential
I

lobing, one sees that the bias for the amplitude comparison monopulse is

much reduced over that of a sequential lober, for small to moderate

signal-to-noise ratios; the processing of phase information in an amplitude

comparison monopulse rather than only envelope information is the cause of this

improvement.

M 27r 27r

E( /f lrr2( )f(r r2 , e2 )dld2 dr dr2  (B30)

0 0 0 0

Also derived in appendix A.
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and is easily seen to be infinite. The quickest way to show tnis is
to note that the existance or nonexist ace of the second moment is

not affected by the fact that a signal is present. Thus, when (B30)

is integrated with only noise present, the result is that the

second moment is infinite. The basic reason is that the denominator

of the integrand has a singularity at r 0 = 0. This result was noted

in the paper by Mosca.

The effect of the singularity is to make the "tails" of the

density function of 9 slightly too high so that th2 second moment does not

exist. A similar phenomenon happens, for example, for the quotient of

two normal distributions which results in a Rayleigh distribution for

which no moments exist.

However, the behavior of the estimator t can be very closely

approximated near the value c=O (which is of most interest) by a

random variable with a finite second moment.

It can be shown that, under most conditions, 1Zl12 can be approximated

by

Z112  4A2p2(6) = IE(Zl)I2 (B31)

Thus, as an approximation to e we can utilize the computationally simpler

estimator T given by

Rq(Z Z*)
= b 21 (B32)

IE(ZI) I
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to evaluate the operation of e. It is seen that all moments of i

exist. The computation of the first moment of t results in

E(t) = (B33)

where we utilize the fact that ZI and Z2 are independent and that

E(Re(Z2ZI*)) = Pe(E(Z2ZI*)). The variance of t is

r2 £2 11.
Var(t) = s + J + ' (B34)

so that for small error angles, e, and moderate to large signal-to-noise

ration Rs , we can approximate the variance by

b
2

Var(f) = , (B35)
4Rs

which is the Cramer-Rao bound given by (B18). The computation of (B34)

uses the fact that

E [Re(Z 2Z *)]2 = I ReE(Z Z *Z Z *) + 1 ReE(Z2Z2Z* Z1*), (B37)

and the moment theorem of Reed.

The key assumption for the approximation of e given by (B32) is that

the angle estimator is operating in a situation whcre the total power in

the sun channel can be closely approximated by the signal power only.

Of course (B32) cannot be used in an operational estimator since the signal

power is actually unknown to the angle estimator and only the total power
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in the sun, channel can be measured. Operationally, the way to produce

an angle estimator for which all moments exist (similiar, for example,

the angle estimator when sequential lobing is employed) is to add a

small positive bias, a, to the denominator of (B20) so that it becomes

Re (Z2Z1)
et=(Z +U2 (B38)(iZlI + ~

All moments for c exist since the denominator is always greater than

zero. The analysis of £ is quite involved and has not been undertaken.

Depending on the operating range of Rs expected, the normalizing constant^s

b can be chosen so that c is unbiased. The use of such a bias term might

be desirable in order to limit the estimated value of c when several signals

interfere in the sum channel.

It can be shown (see [Cramer, 1946], pp 500-504) that as Rs increases
^5

the maximum likelihood estimator c given by (B20) becomes asymptotically

unbiased and is an asymptotically normal and asymptotically efficient

estimator of c, i.e., the variance approaches the Cramer-Rao lower bound.

T is means that c and also T can be approximated by a normal distribution
_ 2

with mean E and variance BCR = in the vicinity of the mean. Precisely
CR 4S

how far out on the tails of the normal density function this approximation

holds has not been investigated, but the approximation shjuld be very

adequate in the vicinity of c. This is the region of interest in most

applications which involve the correction of small tracking errors.
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APP[NIX C:

THE DIFFERENTIAL EQUATIONS: AN ANALYTIC APPROACH

The overall mathematical structure of the single ship/multiple cruise

missile engagement model involves the solution of a sequence of systems of

differential equations

r
mj(t+6Id) mj(tId) "'- Pij(tld) k (td) 1CI)

for t+ 't < t+, k+l < i < M and all d. There is one such system for

each of M+l time intervals [t+, tk+l). The assumed ship's weapon assignment

logic led to expressions for the firing probabilities of the form

m1(tJu) if d=u and 0 <_ t < t I ,

pi (tjd) = undefined if d # u and 0 < t < t l ,

0 otherwise

and, for 2< j < M, (C2)

[l-mj_l(tjd)/mj(tjd)] I < i < W,

(td) = all d and J < t < t

0 1 < i < W, all d and t !.t

As has been explained, equations (CI) and (C2) can be used in tandem

(i.e., by what has here been called tie "bootstrap technique") to compute

the cruis,3 missile survival probabilities m.(.Id).
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It is interesting to note that it is possible to analyze the systems

(Cl) and (C2) to a certain extent using only analytical methods. For

some purposes - - such as obtaining information about the structure of the

solution to (Cl) and (C2) but not necessarily the solution itself -- these

analytic methods may suffice and be more convenient than the usual solution

procedure involving numerical bootstrapping. The purpose of this appendix

is to briefly describe the analytic approach to (Cl) and (C2).

To describe the analytical approach to working with (C1) and (C2), it

suffices to discuss the case of one of the time intervals -- say

t+ < t < t+ for some fixed k with 1 <k<M -- and one of the damagek - - k+l
states d; the analysis for the other time intervals and damage states is the

same.

Writing the differential equations (Cl) in the more customary form

dm.(tld) W
= -mj(tld).z pij(tld).k (tId)

dt i=l

and inserting the expressions (C2) for the firing probabilities pij(tjd)

gives

dm.(tld) = W
t [m. ,(tld)-mJ(tld)]-E ki(tld)

dt i=l

- a (t Ild)[mjI(tid)m J (tdC3)

for j=k+l, ... , M and t < t tk+ where

W
aj(tld) = ki. k(tld)

1=l 1

!.a

iI
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for j=k+l, M., N and t < t< tk+l The initial condition for the system

isthe one which applies to the time interval It + tk+l] namely 1

mj(tld) = mj(t+ Id) when t=t+, k+l < j < M.jk tk

The equations in the system (C3) have a special form; they are often called

"first-order linear" equations.

It is convenient to write (C3) and (C4) in a more compact form by

using vector notation. Put

mk+l (tid)

m(tld)

m (t0ld)mk+l (kd)

M 4Ifd)

mM (41 d)

A~t) 0 ak+2(tld) -ak+2 ***' 0

000 aM(tld)

1Th vauesmj(tkd) may be computed from (18) in the usual way.
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Then (C3) and (C4) may be written

d-0

m(t) - A(t) 7,(t). (C5)

mlthld) m(t ld) when t=t .

If A(t) were a constant matrix -- say A(t)=A for all t in the range

tk 1t < tk+1 -- then the unique solution to the system (C5) would be'

m(tld) = exp[A(t-tkl]-m(t Id) (t+ < t

Since A is a band-diagonal matrix, the computation of the exponential matrix

would be straightforward.

More generally, when A(t) is not a constant matrix (this is the case most

likely to arise in practice), it may be shown (sec, e.g., (Bellman, 1970])

that the unique solution to (C5) is

m(tld) = X(t).m(tkld) (t+ < t < t+

where X(t) is the unique matrix satisfying

dXA (t = A(t) X(t),
dt

X(t) =I.

1In particular, m(t +i1d) would be g~ven by m(tk+Ijd) = exp[A(tk+l-tk)J. tkid)

and these values of the mjk+ld) would be used in computing the mj(t l+d)

in the usual way for the next time interval.
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The matrix X(t) may be computed using the so-called "method of successive

approximations":

X(t) = lim Xn(t)

Iwhere

Xo(t) = I

Xn(t) = I + fA(s)Xn(s)ds n=O,l,2....

Notice finally that the above described "analytical approach" does not

completely avoid the use of numerical techniques because the method of

excessive approximations is inherently numerical in character and because

the computation of the kernel matrix A(t) (for use in C6) will normally be

accomplished numerically.

I,


